Name and surname:
|
Mgr. Silvia Aziriová, PhD.
|
Document type:
|
Research/art/teacher profile of a person
|
The name of the university:
|
Comenius University Bratislava
|
The seat of the university:
|
Šafárikovo námestie 6, 818 06 Bratislava
|
III.a - Occupation-position | III.b - Institution | III.c - Duration |
---|---|---|
Assistant Profesor | Faculty of Medicine | 2014 - present |
IV.a - Activity description, course name, other | IV.b - Name of the institution | IV.c - Year |
---|---|---|
Awarded Scientific - Qualification Level IIa | Slovac Academy of Sciences | 2019 |
V.1.a - Name of the profile course | V.1.b - Study programme | V.1.c - Degree | V.1.d - Field of study |
---|---|---|---|
Pathological Physiology 1 + 2 in Slovak language | General Medicine | II | General Medicine |
Pathological Physiology 1 + 2 in Slovak language | Dentistry | II | Dentistry |
Pathological Physiology 1 in Slovak language | Biomedical Physics | II | Biomedical Physics |
Repova, K., Aziriova, S., Krajcirovicova, K., & Simko, F. (2022). Cardiovascular therapeutics: A new potential for anxiety treatment?. Medicinal research reviews, 42(3), 1202–1245. https://doi.org/10.1002/med.21875
Repova, K., Baka, T., Krajcirovicova, K., Stanko, P., Aziriova, S., Reiter, R. J., & Simko, F. (2022). Melatonin as a Potential Approach to Anxiety Treatment. International journal of molecular sciences, 23(24), 16187. https://doi.org/10.3390/ijms232416187
Repova, K., Aziriova, S., Kovacova, D., Trubacova, S., Baka, T., Kanska, R., Barta, A., Stanko, P., Zorad, S., Molcan, L., Adamcova, M., Paulis, L., & Simko, F. (2019). Lisinopril reverses behavioural alterations in spontaneously hypertensive rats. General physiology and biophysics, 38(3), 265 270. https://doi.org/10.4149/gpb_2019011
Aziriova, S., Repova Bednarova, K., Krajcirovicova, K., Hrenak, J., Rajkovicova, R., Arendasova, K., Kamodyova, N., Celec, P., Zorad, S., Adamcova, M., Paulis, L., & Simko, F. (2014). Doxorubicin-induced behavioral disturbances in rats: protective effect of melatonin and captopril. Pharmacology, biochemistry, and behavior, 124, 284–289. https://doi.org/10.1016/j.pbb.2014.06.021
Krajcirovicova, K., Aziriova, S., Baka, T., Repova, K., Adamcova, M., Paulis, L., & Simko, F. (2018). Ivabradine does not impair anxiety-like behavior and memory in both healthy and L-NAME-induced hypertensive rats. Physiological research, 67(Suppl 4), S655–S664. https://doi.org/10.33549/physiolres.934048
Repova, K., Aziriova, S., Krajcirovicova, K., & Simko, F. (2022). Cardiovascular therapeutics: A new potential for anxiety treatment?. Medicinal research reviews, 42(3), 1202–1245. https://doi.org/10.1002/med.21875
Repova, K., Baka, T., Krajcirovicova, K., Stanko, P., Aziriova, S., Reiter, R. J., & Simko, F. (2022). Melatonin as a Potential Approach to Anxiety Treatment. International journal of molecular sciences, 23(24), 16187. https://doi.org/10.3390/ijms232416187
Baka, T., Stanko, P., Repova, K., Aziriova, S., Krajcirovicova, K., Barta, A., Zorad, S., & Simko, F. (2023). Ivabradine curbs isoproterenol-induced kidney fibrosis. General physiology and biophysics, 42(2), 209–215. https://doi.org/10.4149/gpb_2022057
Repova, K., Stanko, P., Baka, T., Krajcirovicova, K., Aziriova, S., Hrenak, J., Barta, A., Zorad, S., Reiter, R. J., Adamcova, M., & Simko, F. (2022). Lactacystin-induced kidney fibrosis: Protection by melatonin and captopril. Frontiers in pharmacology, 13, 978337. https://doi.org/10.3389/fphar.2022.978337
Simko, F., Baka, T., Repova, K., Aziriova, S., Krajcirovicova, K., Paulis, L., & Adamcova, M. (2021). Ivabradine improves survival and attenuates cardiac remodeling in isoproterenol-induced myocardial injury. Fundamental & clinical pharmacology, 35(4), 744–748. https://doi.org/10.1111/fcp.12620
Aziriova, S., Repova Bednarova, K., Krajcirovicova, K., Hrenak, J., Rajkovicova, R., Arendasova, K., Kamodyova, N., Celec, P., Zorad, S., Adamcova, M., Paulis, L., & Simko, F. (2014). Doxorubicin-induced behavioral disturbances in rats: protective effect of melatonin and captopril. Pharmacology, biochemistry, and behavior, 124, 284–289. https://doi.org/10.1016/j.pbb.2014.06.021 Citované v: Liao, D., Shangguan, D., Wu, Y., Chen, Y., Liu, N., Tang, J., Yao, D., & Shi, Y. (2023). Curcumin protects against doxorubicin induced oxidative stress by regulating the Keap1-Nrf2-ARE and autophagy signaling pathways. Psychopharmacology, 240(5), 1179–1190. https://doi.org/10.1007/s00213-023-06357-z
Aziriova, S., Repova Bednarova, K., Krajcirovicova, K., Hrenak, J., Rajkovicova, R., Arendasova, K., Kamodyova, N., Celec, P., Zorad, S., Adamcova, M., Paulis, L., & Simko, F. (2014). Doxorubicin-induced behavioral disturbances in rats: protective effect of melatonin and captopril. Pharmacology, biochemistry, and behavior, 124, 284–289. https://doi.org/10.1016/j.pbb.2014.06.021 Citované v: Kamińska, K., & Cudnoch-Jędrzejewska, A. (2023). A Review on the Neurotoxic Effects of Doxorubicin. Neurotoxicity research, 41(5), 383–397. https://doi.org/10.1007/s12640-023-00652-5
Aziriova, S., Repova Bednarova, K., Krajcirovicova, K., Hrenak, J., Rajkovicova, R., Arendasova, K., Kamodyova, N., Celec, P., Zorad, S., Adamcova, M., Paulis, L., & Simko, F. (2014). Doxorubicin-induced behavioral disturbances in rats: protective effect of melatonin and captopril. Pharmacology, biochemistry, and behavior, 124, 284–289. https://doi.org/10.1016/j.pbb.2014.06.021 Citované v: Cardoso, C. V., de Barros, M. P., Bachi, A. L. L., Bernardi, M. M., Kirsten, T. B., de Fátima Monteiro Martins, M., Rocha, P. R. D., da Silva Rodrigues, P., & Bondan, E. F. (2020). Chemobrain in rats: Behavioral, morphological, oxidative and inflammatory effects of doxorubicin administration. Behavioural brain research, 378, 112233. https://doi.org/10.1016/j.bbr.2019.112233
Aziriova, S., Repova Bednarova, K., Krajcirovicova, K., Hrenak, J., Rajkovicova, R., Arendasova, K., Kamodyova, N., Celec, P., Zorad, S., Adamcova, M., Paulis, L., & Simko, F. (2014). Doxorubicin-induced behavioral disturbances in rats: protective effect of melatonin and captopril. Pharmacology, biochemistry, and behavior, 124, 284–289. https://doi.org/10.1016/j.pbb.2014.06.021 Citované v: Ghaderi, A., Banafshe, H. R., Mirhosseini, N., Motmaen, M., Mehrzad, F., Bahmani, F., Aghadavod, E., Mansournia, M. A., Reiter, R. J., Karimi, M. A., & Asemi, Z. (2019). The effects of melatonin supplementation on mental health, metabolic and genetic profiles in patients under methadone maintenance treatment. Addiction biology, 24(4), 754–764. https://doi.org/10.1111/adb.12650
Aziriova, S., Repova Bednarova, K., Krajcirovicova, K., Hrenak, J., Rajkovicova, R., Arendasova, K., Kamodyova, N., Celec, P., Zorad, S., Adamcova, M., Paulis, L., & Simko, F. (2014). Doxorubicin-induced behavioral disturbances in rats: protective effect of melatonin and captopril. Pharmacology, biochemistry, and behavior, 124, 284–289. https://doi.org/10.1016/j.pbb.2014.06.021 Citované v: Cvikova, D., Sutovska, H., Babarikova, K., & Molcan, L. (2022). Hypotensive effects of melatonin in rats: Focus on the model, measurement, application, and main mechanisms. Hypertension research : official journal of the Japanese Society of Hypertension, 45(12), 1929–1944. https://doi.org/10.1038/s41440-022-01031-x
VEGA 1/0035/19 - Protection of the Cardiovascular System in Experimental Hypertension and Heart Failure via Dual Inhibition of Neprilysin and AT1 Receptors for Angiotensin II: Comparison with ACE Inhibition and Melatonin - Co-investigator, 2019-2022
VEGA 2/0112/19 - Experimental Myocardial Infarction: The Contribution of Hypertension and Obesity, Effect of Toll-like Receptor Inhibitor - Co-investigator, 2019-2022
APVV APVV-20-0421 - Cardiometabolic Effects of Mas Receptor Stimulation by Modulating the Renin-Angiotensin System - Co-investigator, 2019-2022
VEGA 1/0048/23 - Protection of the Cardiovascular System in Experimental Hypertension and Heart Failure by Inhibitor of Sodium-Glucose Cotransporter 2 – Dapagliflozin: Effects on the Heart, Vessels, and Kidneys. Comparison with ACE Inhibitor Captopril - Co-investigator, 2023-2025