Name and surname:
|
Mgr. Mária Brodňanová, PhD.
|
Document type:
|
Research/art/teacher profile of a person
|
The name of the university:
|
Comenius University Bratislava
|
The seat of the university:
|
Šafárikovo námestie 6, 818 06 Bratislava
|
III.a - Occupation-position | III.b - Institution | III.c - Duration |
---|---|---|
Scientific researcher | Jessenius Faculty of Medicine CU | 2021 - |
Scientific researcher | Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano | 2024 - 2025 |
IV.a - Activity description, course name, other | IV.b - Name of the institution | IV.c - Year |
---|---|---|
IX. Begginers Course in Molecular Diagnostics | International Federation of Clinical Chemistry and Laboratory Medicine | 2018 |
ISN Advanced School - New challenges and opportunities in neurochemical studies – novel tools and approaches | International Society for Neurochemistry | 2023 |
Medical Statistics Summer School | Jessenius Faculty of Medicine in Martin CU | 2021 |
Medical Education Course | Jessenius Faculty of Medicine in Martin CU | 2020 |
V.1.a - Name of the profile course | V.1.b - Study programme | V.1.c - Degree | V.1.d - Field of study |
---|---|---|---|
Medical Chemistry 1 | General Medicine | I.+II. | General Medicine |
Medical Chemistry 2 | General Medicine | I.+II. | General Medicine |
Medical Biochemistry 1 | General Medicine | I.+II. | General Medicine |
Medical Biochemistry 2 | General Medicine | I.+II. | General Medicine |
Medical Chemistry for Dental Medicine | Dentistry, Dental Medicine | I.+II. | Dentistry, Dental Medicine |
Medical Biochemistry for Dental Medicine 1 | Dentistry, Dental Medicine | I.+II. | Dentistry, Dental Medicine |
Medical Biochemistry for Dental Medicine 2 | Dentistry, Dental Medicine | I.+II. | Dentistry, Dental Medicine |
Brodnanova, M.; Hatokova, Z.; Evinova, A.; Cibulka, M.; Racay, P. Differential Impact of Imipramine on Thapsigargin- and Tunicamycin-Induced Endoplasmic Reticulum Stress and Mitochondrial Dysfunction in Neuroblastoma SH-SY5Y Cells. European Journal of Pharmacology 2021, 902, 174073. https://doi.org/10.1016/j.ejphar.2021.174073. IF (JRC) 2020: 4,432, Q1 – SJR) Citations (12)
Cibulka, M.; Brodnanova, M.; Grendar, M.; Grofik, M.; Kurca, E.; Pilchova, I.; Osina, O.; Tatarkova, Z.; Dobrota, D.; Kolisek, M. SNPs Rs11240569, Rs708727, and Rs823156 in SLC41A1 Do Not Discriminate Between Slovak Patients with Idiopathic Parkinson’s Disease and Healthy Controls: Statistics and Machine-Learning Evidence. IJMS 2019, 20 (19), 4688. IF (JRC) 2018: 4,183, Citations (11)
Cibulka, M.; Brodnanova, M.; Grendar, M.; Necpal, J.; Benetin, J.; Han, V.; Kurca, E.; Nosal, V.; Skorvanek, M.; Vesely, B.; Stanclova, A.; Lasabova, Z.; Pös, Z.; Szemes, T.; Stuchlik, S.; Grofik, M.; Kolisek, M. Alzheimer’s Disease-Associated SNP Rs708727 in SLC41A1 May Increase Risk for Parkinson’s Disease: Report from Enlarged Slovak Study. IJMS 2022, 23 (3), 1604. https://doi.org/10.3390/ijms23031604. IF (JRC) 2021: 6,208, Citations (10)
Evinova, A.; Hatokova, Z.; Tatarkova, Z.; Brodnanova, M.; Dibdiakova, K.; Racay, P. Endoplasmic Reticulum Stress Induces Mitochondrial Dysfunction but Not Mitochondrial Unfolded Protein Response in SH-SY5Y Cells. Mol Cell Biochem 2022, 477 (3), 965–975. https://doi.org/10.1007/s11010-021-04344-6. IF (JRC) 2021: 3,842, Citations (10)
Ziakova, K.; Kovalska, M.; Pilchova, I.; Dibdiakova, K.; Brodnanova, M.; Pokusa, M.; Kalenska, D.; Racay, P. Involvement of Proteasomal and Endoplasmic Reticulum Stress in Neurodegeneration After Global Brain Ischemia. Mol Neurobiol 2023, 60 (11), 6316–6329. https://doi.org/10.1007/s12035-023-03479-5. IF (JRC) 2022: 5,1, Citations (2)
Brodnanova, M.; Hatokova, Z.; Evinova, A.; Cibulka, M.; Racay, P. Differential Impact of Imipramine on Thapsigargin- and Tunicamycin-Induced Endoplasmic Reticulum Stress and Mitochondrial Dysfunction in Neuroblastoma SH-SY5Y Cells. European Journal of Pharmacology 2021, 902, 174073. https://doi.org/10.1016/j.ejphar.2021.174073. IF (JRC) 2020: 4,432, Q1 – SJR) Citations (12)
Cibulka, M.; Brodnanova, M.; Grendar, M.; Grofik, M.; Kurca, E.; Pilchova, I.; Osina, O.; Tatarkova, Z.; Dobrota, D.; Kolisek, M. SNPs Rs11240569, Rs708727, and Rs823156 in SLC41A1 Do Not Discriminate Between Slovak Patients with Idiopathic Parkinson’s Disease and Healthy Controls: Statistics and Machine-Learning Evidence. IJMS 2019, 20 (19), 4688. IF (JRC) 2018: 4,183, Citations (11)
Cibulka, M.; Brodnanova, M.; Grendar, M.; Necpal, J.; Benetin, J.; Han, V.; Kurca, E.; Nosal, V.; Skorvanek, M.; Vesely, B.; Stanclova, A.; Lasabova, Z.; Pös, Z.; Szemes, T.; Stuchlik, S.; Grofik, M.; Kolisek, M. Alzheimer’s Disease-Associated SNP Rs708727 in SLC41A1 May Increase Risk for Parkinson’s Disease: Report from Enlarged Slovak Study. IJMS 2022, 23 (3), 1604. https://doi.org/10.3390/ijms23031604. IF (JRC) 2021: 6,208, Citations (10)
Evinova, A.; Hatokova, Z.; Tatarkova, Z.; Brodnanova, M.; Dibdiakova, K.; Racay, P. Endoplasmic Reticulum Stress Induces Mitochondrial Dysfunction but Not Mitochondrial Unfolded Protein Response in SH-SY5Y Cells. Mol Cell Biochem 2022, 477 (3), 965–975. https://doi.org/10.1007/s11010-021-04344-6. IF (JRC) 2021: 3,842, Citations (10)
Ziakova, K.; Kovalska, M.; Pilchova, I.; Dibdiakova, K.; Brodnanova, M.; Pokusa, M.; Kalenska, D.; Racay, P. Involvement of Proteasomal and Endoplasmic Reticulum Stress in Neurodegeneration After Global Brain Ischemia. Mol Neurobiol 2023, 60 (11), 6316–6329. https://doi.org/10.1007/s12035-023-03479-5. IF (JRC) 2022: 5,1, Citations (2)
Brodnanova, M.; Hatokova, Z.; Evinova, A.; Cibulka, M.; Racay, P. Differential Impact of Imipramine on Thapsigargin- and Tunicamycin-Induced Endoplasmic Reticulum Stress and Mitochondrial Dysfunction in Neuroblastoma SH-SY5Y Cells. European Journal of Pharmacology 2021, 902, 174073. https://doi.org/10.1016/j.ejphar.2021.174073.
Gondáš, E.; Kráľová Trančíková, A.; Baranovičová, E.; Šofranko, J.; Hatok, J.; Kowtharapu, B. S.; Galanda, T.; Dobrota, D.; Kubatka, P.; Busselberg, D.; Murín, R. Expression of 3-Methylcrotonyl-CoA Carboxylase in Brain Tumors and Capability to Catabolize Leucine by Human Neural Cancer Cells. Cancers 2022, 14 (3), 585. https://doi.org/10.3390/cancers14030585.
Asensi-Cantó, A.; López-Abellán, M. D.; Castillo-Guardiola, V.; Hurtado, A. M.; Martínez-Penella, M.; Luengo-Gil, G.; Conesa-Zamora, P. Antitumoral Effects of Tricyclic Antidepressants: Beyond Neuropathic Pain Treatment. Cancers 2022, 14 (13), 3248. https://doi.org/10.3390/cancers14133248.
Umano, A.; Fang, K.; Qu, Z.; Scaglione, J.B.; Altinok, S.; Treadway, C.J.; Wick E.T.; Paulakonis, E.; Karunanayake, C.; Chou, S.; Bardakjian, T.M.; Gonzalez-Alegre, P.; Page, R.C.; Schisler, J.C.; Brown, N.G.; Yan, D.; Scaglione, K.M. The molecular basis of spinocerebellar ataxia type 48 caused by a de novo mutation in the ubiquitin ligase CHIP. JBC 2022, 289 (5), 101899. 10.1016/j.jbc.2022.101899.
Lusa, W.; Rozpędek-Kamińska, W.; Siwecka, N.; Galita, G.; Majsterek, I.; Kucharska, E. Small‑molecule PKR‑like Endoplasmic Reticulum Kinase Inhibitors as a Novel Targeted Therapy for Parkinson’s Disease. Mol. Med. Rep. 2023, 27 (5), 1–15. https://doi.org/10.3892/mmr.2023.12989.
Talati, M. N.; Vemireddy, S.; Seelam, S. D.; Halmuthur. M, S. K. Synthesis and Immunomodulatory Activity of Novel Amino Acid Analogues of Fluoxetine. Synth. Commun. 2023, 53 (10), 731–743. https://doi.org/10.1080/00397911.2023.2196024.
Cibulka, M.; Brodnanova, M.; Grendar, M.; Necpal, J.; Benetin, J.; Han, V.; Kurca, E.; Nosal, V.; Skorvanek, M.; Vesely, B.; Stanclova, A.; Lasabova, Z.; Pös, Z.; Szemes, T.; Stuchlik, S.; Grofik, M.; Kolisek, M. Alzheimer’s Disease-Associated SNP Rs708727 in SLC41A1 May Increase Risk for Parkinson’s Disease: Report from Enlarged Slovak Study. IJMS 2022, 23 (3), 1604.
Fan, R.; Peng, X.; Xie, L.; Dong, K.; Ma, D.; Xu, W.; Shi, X.; Zhang, S.; Chen, J.; Yu, X.; Yang, Y. Importance of Bmal1 in Alzheimer’s Disease and Associated Aging-Related Diseases: Mechanisms and Interventions. Aging Cell 2022, 21 (10). https://doi.org/10.1111/acel.13704.
Zhang, Y.-Y.; Li, X.-S.; Ren, K.-D.; Peng, J.; Luo, X.-J. Restoration of Metal Homeostasis: A Potential Strategy against Neurodegenerative Diseases. Ageing Res. Rev. 2023, 87. https://doi.org/10.1016/j.arr.2023.101931.
Nemoto, T.; Tagashira, H.; Kita, T.; Kita, S.; Iwamoto, T. Functional Characteristics and Therapeutic Potential of SLC41 Transporters. J. Pharmacol. Sci. 2023, 151 (2), 88–92. https://doi.org/10.1016/j.jphs.2022.12.003.
Serpente, M.; Ghezzi, L.; Fenoglio, C.; Buccellato, F. R.; Fumagalli, G. G.; Rotondo, E.; Arcaro, M.; Arighi, A.; Galimberti, D. miRNA Expression Is Increased in Serum from Patients with Semantic Variant Primary Progressive Aphasia. Int. J. Mol. Sci. 2022, 23 (15). https://doi.org/10.3390/ijms23158487.
Garro-Núñez, D.; Mora-Cubillo, P.; Fonseca-Bone, S.; Picado-Martínez, M. J.; Fonseca-Brenes, M.; Raventós-Vorst, H.; Chavarría-Soley, G. The Many Roles of the Alzheimer-Associated Gene PM20D1. J. Transl. Genet. Genomics 2022, 6 (3), 361–374. https://doi.org/10.20517/jtgg.2022.10.
Cibulka, M.; Brodnanova, M.; Grendar, M.; Grofik, M.; Kurca, E.; Pilchova, I.; Osina, O.; Tatarkova, Z.; Dobrota, D.; Kolisek, M. SNPs Rs11240569, Rs708727, and Rs823156 in SLC41A1 Do Not Discriminate Between Slovak Patients with Idiopathic Parkinson’s Disease and Healthy Controls: Statistics and Machine-Learning Evidence. IJMS 2019, 20 (19), 4688.
Mei, J.; Desrosiers, C.; Frasnelli, J. Machine Learning for the Diagnosis of Parkinson’s Disease: A Review of Literature. Front. Aging Neurosci. 2021, 13. https://doi.org/10.3389/fnagi.2021.633752.
Rana, A.; Dumka, A.; Singh, R.; Panda, M. K.; Priyadarshi, N.; Twala, B. Imperative Role of Machine Learning Algorithm for Detection of Parkinson’s Disease: Review, Challenges and Recommendations. Diagnostics 2022, 12 (8). https://doi.org/10.3390/diagnostics12082003.
Rana, A.; Dumka, A.; Singh, R.; Rashid, M.; Ahmad, N.; Panda, M. K. An Efficient Machine Learning Approach for Diagnosing Parkinson’s Disease by Utilizing Voice Features. Electron. Switz. 2022, 11 (22). https://doi.org/10.3390/electronics11223782.
Rana, A.; Dumka, A.; Singh, R.; Panda, M. K.; Priyadarshi, N. A Computerized Analysis with Machine Learning Techniques for the Diagnosis of Parkinson’s Disease: Past Studies and Future Perspectives. Diagnostics 2022, 12 (11). https://doi.org/10.3390/diagnostics12112708.
Maier, J.; Iotti, S. The Recurring Word in the Scientific Articles about the Role of Mg in Living Systems Is “Key”. IJMS 2023, 24 (12). 10100. 10.3390/ijms241210100.
Evinova, A.; Hatokova, Z.; Tatarkova, Z.; Brodnanova, M.; Dibdiakova, K.; Racay, P. Endoplasmic Reticulum Stress Induces Mitochondrial Dysfunction but Not Mitochondrial Unfolded Protein Response in SH-SY5Y Cells. Mol Cell Biochem 2022, 477 (3), 965–975. https://doi.org/10.1007/s11010-021-04344-6.
Li, M.; Tang, S.; Velkov, T.; Shen, J.; Dai, C. Copper exposure induces mitochondrial dysfunction and hepatotoxicity via the induction of oxidative stress and PERK/ATF4 -mediated endoplasmic reticulum. Environ. Pollut. 2024, 352. 124145. 10.1016/j.envpol.2024.124145.
Zhang, Y,; Guo, S,; Fu, X.; Zhang, Q.; Wang, H. Emerging insights into the role of NLRP3 inflammasome and endoplasmic reticulum stress in renal diseases. Int. Immunopharmacol. 2024, 136. 112342. 10.1016/j.intimp.2024.112342.
Chen, Q.; Li, L.; Samidurai, A.; Thompson, J.; Hu, Y.; Willard, B.; Lesnefsky, E. J. Acute Endoplasmic Reticulum Stress-Induced Mitochondria Respiratory Chain Damage: The Role of Activated Calpains. FASEB J. 2024, 38 (2). https://doi.org/10.1096/fj.202301158RR.
Ulaganathan, T.; Perales, S.; Mani, S.; Baskhairoun, B. A.; Rajasingh, J. Pathological Implications of Cellular Stress in Cardiovascular Diseases. Int. J. Biochem. Cell Biol. 2023, 158. https://doi.org/10.1016/j.biocel.2023.106397.
Li, K.; Li, Y.; Ding, H.; Chen, J.; Zhang, X. Metal-Binding Proteins Cross-Linking with Endoplasmic Reticulum Stress in Cardiovascular Diseases. J. Cardiovasc. Dev. Dis. 2023, 10 (4). https://doi.org/10.3390/jcdd10040171.
Ziakova, K.; Kovalska, M.; Pilchova, I.; Dibdiakova, K.; Brodnanova, M.; Pokusa, M.; Kalenska, D.; Racay, P. Involvement of Proteasomal and Endoplasmic Reticulum Stress in Neurodegeneration After Global Brain Ischemia. Mol Neurobiol 2023, 60 (11), 6316–6329. https://doi.org/10.1007/s12035-023-03479-5.
Dulka, K.; Lajkó, N.; Nacsa, K.; Gulya, K. Opposite and Differently Altered Postmortem Changes in H3 and H3K9me3 Patterns in the Rat Frontal Cortex and Hippocampus. Epigenomes 2024, 8 (1). https://doi.org/10.3390/epigenomes8010011.
Khanra, S.; Singh, S.; Thakur, G. Mechanistic exploration of ubiquitination-mediated pathways in cerebral ischemic injury. Mol. Biol. Rep. 2025, 52 (1). 22. 10.1007/s11033-024-10123-5.
Identification of components of magnesium homeostasis and study of the regulation in blood-brain barrier cells Project VEGA 1/0039/23. Realization: 2023 -2025. investigator
Determination of mitochondrial fitness in the diagnostics and prediction of Parkinson's disease. Project APVV-19-0222. Realization: 2020-2024. Total budget: 220 000 €; investigator
The role of the STAT3 signalling pathway in the regulation of the Na + / Mg2 + promoter of the SLC41A1 exchanger: from inflammation to Parkinson’s disease. Project VEGA 1/0554/19. Realization: 2019-2021. investigator
The impact of changes in expression of gene encoding magnesium transporter on cell response mechanisms in different models of endoplasmic reticulum stress. Project VEGA 1/0277/18. Realization: 2018-2021. investigator
The role of cellular organelles and their interactions in process of protein synthesis, modification and degradation in relation to ischemia-induced delayed neuronal death. Project APVV-16-0033. Realization: 2017-2021. Total budget: 210 000 €; investigator