Vedecko/umelecko-pedagogická charakteristika osoby
Meno a priezvisko:
Mgr. Jana Hricovíniová, PhD.
Typ dokumentu:
Vedecko/umelecko-pedagogická charakteristika osoby
Názov vysokej školy:
Univerzita Komenského v Bratislave
Sídlo vysokej školy:
Šafárikovo námestie 6, 818 06 Bratislava

I. - Základné údaje

I.1 - Priezvisko
Hricovíniová
I.2 - Meno
Jana
I.3 - Tituly
Mgr., PhD.
I.4 - Rok narodenia
1994
I.5 - Názov pracoviska
Farmaceutická fakulta Univerzity Komenského, Katedra bunkovej a molekulárnej biológie liečiv
I.6 - Adresa pracoviska
Kalinčiakova 8, 832 32, Bratislava
I.7 - Pracovné zaradenie
Vysokoškolský učiteľ - Odborný asistent
I.8 - E-mailová adresa
jana.hricoviniova@uniba.sk
I.9 - Hyperlink na záznam osoby v Registri zamestnancov vysokých škôl
https://www.portalvs.sk/regzam/detail/45708
I.10 - Názov študijného odboru, v ktorom osoba pôsobí na vysokej škole
Farmácia
I.11 - ORCID iD
0000-0001-5098-4122

II. - Vysokoškolské vzdelanie a ďalší kvalifikačný rast

II.1 - Vysokoškolské vzdelanie prvého stupňa
II.a - Názov vysokej školy alebo inštitúcie
Prírodovedecká fakulta Univerzity Komenského
II.b - Rok
2016
II.c - Odbor a program
Biológia, Biológia
II.2 - Vysokoškolské vzdelanie druhého stupňa
II.a - Názov vysokej školy alebo inštitúcie
Prírodovedecká fakulta Univerzity Komenského
II.b - Rok
2018
II.c - Odbor a program
Biológia, Genetika
II.3 - Vysokoškolské vzdelanie tretieho stupňa
II.a - Názov vysokej školy alebo inštitúcie
Prírodovedecká fakulta Univerzity Komenského
II.b - Rok
2022
II.c - Odbor a program
Biológia, Genetika
II.4 - Titul docent
II.5 - Titul profesor
II.6 - Titul DrSc.

III. - Súčasné a predchádzajúce zamestnania

III.a - Zamestnanie-pracovné zaradenie III.b - Inštitúcia III.c - Časové vymedzenie
Vysokoškolský učiteľ - Odborný asistent Farmaceutická fakulta Univerzity Komenského September 2022 -

IV. - Rozvoj pedagogických, odborných, jazykových, digitálnych a iných zručností

IV.a - Popis aktivity, názov kurzu (ak išlo o kurz), iné IV.b - Názov inštitúcie IV.c - Rok
Kurz prezentačné zručnosti pre doktorandov Slovenská akadémia vied 2019
Vedecké dielne onkológia, popularizačno-vedecké prednášky organizované pre stredné školy Slovenská akadémia vied 2019, 2020, 2021, 2022

V. - Prehľad aktivít v rámci pedagogického pôsobenia na vysokej škole

V.1 - Prehľad zabezpečovaných profilových študijných predmetov v aktuálnom akademickom roku podľa študijných programov
V.2 - Prehľad o zodpovednosti za uskutočňovanie, rozvoj a zabezpečenie kvality študijného programu alebo jeho časti na vysokej škole v aktuálnom akademickom roku
V.3 - Prehľad o zodpovednosti za rozvoj a kvalitu odboru habilitačného konania a inauguračného konania v aktuálnom akademickom roku
V.4 - Prehľad vedených záverečných prác
V.4.1 - Počet aktuálne vedených prác
V.4.b - Diplomové (druhý stupeň)
3 diplomové práce
V.4.2 - Počet obhájených prác
V.5 - Prehľad zabezpečovaných ostatných študijných predmetov podľa študijných programov v aktuálnom akademickom roku
V.5.a - Názov predmetu V.5.b - Študijný program V.5.c - Stupeň V.5.d - Študijný odbor
Mikrobiológia Farmácia I.,II. 7.3.1. Farmácia
Technológia biologických liečiv Farmácia I.,II. 7.3.1. Farmácia
Imunológia Farmácia I.,II. 7.3.1. Farmácia

VI. - Prehľad výsledkov tvorivej činnosti

VI.1 - Prehľad výstupov tvorivej činnosti a ohlasov na výstupy tvorivej činnosti
VI.1.1 - Počet výstupov tvorivej činnosti
VI.1.a - Celkovo
40
VI.1.b - Za posledných šesť rokov
37
VI.1.2 - Počet výstupov tvorivej činnosti registrovaných v databázach Web of Science alebo Scopus
VI.1.a - Celkovo
8
VI.1.b - Za posledných šesť rokov
8
VI.1.3 - Počet ohlasov na výstupy tvorivej činnosti
VI.1.a - Celkovo
35
VI.1.b - Za posledných šesť rokov
35
VI.1.4 - Počet ohlasov registrovaných v databázach Web of Science alebo Scopus na výstupy tvorivej činnosti
VI.1.a - Celkovo
35
VI.1.b - Za posledných šesť rokov
35
VI.1.5 - Počet pozvaných prednášok na medzinárodnej a národnej úrovni
VI.2 - Najvýznamnejšie výstupy tvorivej činnosti
1

Hricovínová J, Ševčovičová A, Hricovínová Z. (2020). Evaluation of the genotoxic, DNA-protective and antioxidant profile of synthetic alkyl gallates and gallotannins using in vitro assays. Toxicol in Vitro, 65: 104789.

2

Hricovínová J, Hricovínová Z, Kozics K. (2021). Antioxidant, cytotoxic, genotoxic, and DNA-protective potential of 2,3-substituted quinazolinones: structure-activity relationship study. Int J Mol Sci, 22(2): 610.

3

Hricovínová Z, Mascaretti Š, Hricovínová J, Čížek A, Jampílek, J. (2021). New unnatural gallotannins: A way toward green antioxidants, antimicrobials and antibiofilm agents. Antioxidants, 10 (8): 1288, 1-19. 

4

Gurgul I., Hricovíniová J., Mazuryk O., Hricovíniová Z., Brindell M. (2023). Enhancement of the Cytotoxicity of Quinazolinone Schiff Base Derivatives with Copper Coordination. Inorganics, 11 (10): 391.

5

Oboňová B, Valentová J, Litecká M, Pašková Ľ, Hricovíniová J, Bilková A, Bilka F, Horváth B, Habala L. (2024). Novel Copper (II) Complexes with Fluorine-Containing Reduced Schiff Base Ligands Showing Marked Cytotoxicity in the HepG2 Cancer Cell Line. Int. J. Mol. Sci., 25, 9166. https://doi.org/10.3390/ijms25179166

6

Pindjakova D, Mascaretti S, Hricovíniová J, Hosek J, Gregorová J, Kos J, Čížek A, Hricovíniová Z, Jampílek J. (2024). Critical view on antimicrobial, antibiofilm and cytotoxic activities of quinazolin-4(3H)-one derived schiff bases and their Cu(II) complexes. Heliyon, 10(7), e29051. doi: 10.1016/j.heliyon.2024.e29051.

VI.3 - Najvýznamnejšie výstupy tvorivej činnosti za ostatných šesť rokov
1

Hricovínová J, Ševčovičová A, Hricovínová Z. (2020) Evaluation of the genotoxic, DNA-protective and antioxidant profile of synthetic alkyl gallates and gallotannins using in vitro assays. Toxicol in Vitro, 65: 104789.

2

Hricovínová J, Hricovínová Z, Kozics K. (2021) Antioxidant, cytotoxic, genotoxic, and DNA-protective potential of 2,3-substituted quinazolinones: structure-activity relationship study. Int J Mol Sci, 22(2): 610.

3

Hricovínová Z, Mascaretti Š, Hricovínová J, Čížek A, Jampílek, J. (2021) New unnatural gallotannins: A way toward green antioxidants, antimicrobials and antibiofilm agents. Antioxidants, 10 (8): 1288, 1-19. 

4

Gurgul I., Hricovíniová J., Mazuryk O., Hricovíniová Z., Brindell M. (2023). Enhancement of the Cytotoxicity of Quinazolinone Schiff Base Derivatives with Copper Coordination. Inorganics, 11 (10): 391.

5

Oboňová B, Valentová J, Litecká M, Pašková Ľ, Hricovíniová J, Bilková A, Bilka F, Horváth B, Habala L. (2024). Novel Copper (II) Complexes with Fluorine-Containing Reduced Schiff Base Ligands Showing Marked Cytotoxicity in the HepG2 Cancer Cell Line. Int. J. Mol. Sci. 25, 9166, 1-18. https://doi.org/10.3390/ijms25179166

6

Pindjakova D, Mascaretti S, Hricovíniová J, Hosek J, Gregorová J, Kos J, Čížek A, Hricovíniová Z, Jampílek J. (2024). Critical view on antimicrobial, antibiofilm and cytotoxic activities of quinazolin-4(3H)-one derived schiff bases and their Cu(II) complexes. Heliyon 10(7), e29051. doi: 10.1016/j.heliyon.2024.e29051.

VI.4 - Najvýznamnejšie ohlasy na výstupy tvorivej činnosti
1

Hricovínová J, Ševčovičová A, Hricovínová Z. (2020). Evaluation of the genotoxic, DNA-protective and antioxidant profile of synthetic alkyl gallates and gallotannins using in vitro assays. Toxicol in Vitro, 65: 104789.

  1. Kostyuk S V, Proskurnina E V, Savinova E A, Ershova E S, Kraevaya O A, Kameneva L V, Umryukhin P E, Dolgikh O A, Kutsev S I, Troshin P A, Veiko N N. (2020). Effects of Functionalized Fullerenes on ROS Homeostasis Determine Their Cytoprotective or Cytotoxic Properties. Nanomaterials (Basel), 10(7):1405. doi.org/10.3390/nano10071405 , Scopus
  2. Al-Zahrani N A, El-Shishtawy R M, Asiri A M. (2020). Recent developments of gallic acid derivatives and their hybrids in medicinal chemistry: A review. Eur J Med Chem, 204:112609. doi.org/10.1016/j.ejmech.2020.112609 ,Scopus
  3. Liu N, Ni S, Gao H, Chang Y, Fu Y, Liu W, Qin M. (2021). Laccase-Catalyzed Grafting of Lauryl Gallate on Chitosan To Improve Its Antioxidant and Hydrophobic Properties. Biomacromolecules, 22(11): 4501-4509. , Scopus
  4. Figat, R. (2021). Phenolic acids – antigenotoxic compounds from medicinal and edible plants. Prospects in Pharmaceutical Sciences19(4), 28–41. https://doi.org/10.56782/pps.9 ,Scopus
  5. He, FH. (2022). Recognition of Gallotannins and the Physiological Activities: From Chemical View. Front Nutr, 9: 888892.; Scopus
  6. He, FH. (2023). "Gallotannins" (book chapter), In Handbook of Food Bioactive Ingredients: Properties and Applications, Springer International Publishing, p. 427 - 441, Scopus 
  7. Avuloglu Yilmaz E, Yuzbasioglu D, Unal F. (2023). Investigation of genotoxic effect of octyl gallate used as an antioxidant food additive in in vitro test systems. Mutagenesis; 38(3):151-159. doi: 10.1093/mutage/gead005.,Scopus
  8. Encarnação, S.; Lima, K.; Malú, Q.; Caldeira, G.I.; Duarte, M.P.; Rocha, J.; Lima, B.S.; Silva, O. (2024). An Integrated Approach to the Anti-Inflammatory, Antioxidant, and Genotoxic Potential of Portuguese Traditional Preparations from the Bark of Anacardium occidentale L. Plants, 13, 420.  https://doi.org/10.3390/plants13030420 , Scopus
2

Hricovínová J, Hricovínová Z, Kozics K. (2021). Antioxidant, cytotoxic, genotoxic, and DNA-protective potential of 2,3-substituted quinazolinones: structure-activity relationship study. Int J Mol Sci, 22(2): 610.

  1. Mravljak J, Slavec L, Hrast, M, Sova, M. (2021). Synthesis and Evaluation of Antioxidant Properties of 2-Substituted Quinazolin-4(3H)-ones. Molecules, 26 (21), 6585. doi.org/10.3390/molecules26216585; Scopus
  2. Karan R, Agarwal P, Sinha M, Mahato N. (2021). Recent Advances on Quinazoline Derivatives: A Potential Bioactive Scaffold in Medicinal Chemistry. Chem Engineering, 5: 73. doi.org/10.3390/chemengineering5040073, Scopus
  3. Wang, W., Zou, P. S., Pang, L., Pan, C. X., Mo, D. L., & Su, G. F. (2022). Recent advances in the synthesis of 2, 3-fused quinazolinones. Organic & Biomolecular Chemistry20(32), 6293-6313. DOI https://doi.org/10.1039/D2OB00778A ,Scopus
  4. Gomaa HAM. (2022). A comprehensive review of recent advances in the biological activities of quinazolines. Chem Biol Drug Des.;100(5):639-655. doi: 10.1111/cbdd.14129., Scopus
  5. Zayed, M. F. (2022). Medicinal Chemistry of Quinazolines as Analgesic and Anti-Inflammatory Agents. ChemEngineering6(6), 94. 10.3390/chemengineering6060094,Scopus
  6. Hricovini, M.,Jampilek. (2023). J. Chemistry towards Biology.  Int. J. Mol. Sci.24, 3998. https://doi.org/10.3390/ijms24043998;, Scopus
  7. Zayed, M.F. (2023). Medicinal Chemistry of Quinazolines as Anticancer Agents Targeting Tyrosine Kinases.  Sci. Pharm.91, 18. https://doi.org/10.3390/scipharm91020018,Scopus
  8. Hima, P., Tomasini, M., Paater, A., Dey,R. (2024). KOtBu Mediated Alcohol Dehydrogenation Strategy: Synthesis of 2-Aryl Quinazolinones. ChemistrySelect, 9(11), Article number e202400468, doi: 10.1002/slct.202400468, Scopus
  9. Tirehdast, A., Sheikhi-Mohammareh, S., Sabet-Sarvestani, H., Organ, M.G., Semeniuchenko, V., Shiri, A. (2024). Design and synthesis of novel main protease inhibitors of COVID-19: quinoxalino[2,1-b]quinazolin-12-ones. RSC Advances, 14(40), 29122-29133, https://doi.org/10.1039/d4ra06025c, Scopus
  10. Vageesh, M., Patil, O., Hima, P., Dey, R. (2024). Acceptorless Dehydrogenation under Neat Reaction Conditions: Synthesis of 2-Aryl/Alkyl Quinazolinones Using Supported Ni NPs as Catalyst. Synlett, 35(20), 2496 – 2502, doi: 10.1055/a-2388-9487, Scopus
  11. Bala, I.A., Asiri, A.M., El-Shishtawy, R.M. (2024). Quinazoline derivatives and hybrids: recent structures with potent bioactivity. Medicinal Chemistry Research. 33(12), 2372 – 2419, DOI:10.1007/s00044-024-03318-9, Scopus

3

Hricovínová Z, Mascaretti Š, Hricovínová J, Čížek A, Jampílek, J. (2021). New unnatural gallotannins: A way toward green antioxidants, antimicrobials and antibiofilm agents. Antioxidants, 10 (8): 1288, 1-19. 

  1. Volynets G, Vyshniakova H, Nitulescu G, Nitulescu GM, Ungurianu A, Margina D, Moshynets O, Bdzhola V, Koleiev I, Iungin O, Tarnavskiy S, Yarmoluk S. (2021) Identification of Novel Antistaphylococcal Hit Compounds Targeting Sortase A. Molecules, 26: 7095. doi.org/10.3390/molecules26237095 ,Scopus
  2. He, FH. (2022). Recognition of Gallotannins and the Physiological Activities: From Chemical View. Front Nutr, 9: 888892. ,Scopus
  3. He, FH. (2023). "Gallotannins" (book chapter), In Handbook of Food Bioactive Ingredients: Properties and Applications, Springer International Publishing, p. 427 - 441, Scopus
  4. Villanueva X, Zhen L, Ares JN, Vackier T, Lange H, Crestini C, Steenackers HP. (2023) Effect of chemical modifications of tannins on their antimicrobial and antibiofilm effect against Gram-negative and Gram-positive bacteria. Front Microbiol.;13:987164. doi: 10.3389/fmicb.2022.987164, Scopus
  5. Tiwana, G., Cock, I. E., & Cheesman, M. J. (2024). Combinations of Terminalia bellirica (Gaertn.) Roxb. and Terminalia chebula Retz. Extracts with Selected Antibiotics Against Antibiotic-Resistant Bacteria: Bioactivity and Phytochemistry. Antibiotics13(10), 994. https://doi.org/10.3390/antibiotics13100994, Scopus
  6. Jo, D.-M., Tabassum, N., Oh, D. K., Ko, S.-C., Kim, K. W., Yang, D., Kim, J.-Y., Oh, G.-W., Choi, G., Lee, D.-S., Park, S.-K., Kim, Y.-M., & Khan, F. (2024). Green Medicine: Advancing Antimicrobial Solutions with Diverse Terrestrial and Marine Plant-Derived Compounds. Processes12(11), 2316. https://doi.org/10.3390/pr12112316 , Scopus
  7. Wang, M., Luo, J., Li, H.,Ge, C.,Jing, F.,Guo, J.,Zhang, Q., Gao, X., Cheng, C., Zhou, D. (2024). Synergistic effect of foliar exposure to TiO2 nanoparticles and planting density modulates the metabolite profile and transcription to alleviate cadmium induced phytotoxicity to wheat (Triticum aestivum L.). Environmental Science: Nano.,12(1), 879 – 893. DOI: 10.1039/d4en00763h, Scopus
4

Gurgul I., Hricovíniová J., Mazuryk O., Hricovíniová Z., Brindell M. (2023). Enhancement of the Cytotoxicity of Quinazolinone Schiff Base Derivatives with Copper Coordination. Inorganics, 11 (10): 391. 

  1. Balewski, Ł., Plech, T., Korona-Głowniak, I., Hering, A., Szczesio, M. et al. (2024). Copper(II) Complexes with 1-(Isoquinolin-3-yl)heteroalkyl-2-ones: Synthesis, Structure and Evaluation of Anticancer, Antimicrobial and Antioxidant Potential. International Journal of Molecular Sciences, 25(1)8; https://doi.org/10.3390/ijms25010008 , Scopus
  2. Shumi, G., Demissie, T.B., Koobotse, M., Kenasa, G., Beas, I.N., Zachariah, M., Desalegn, T. (2024). Cytotoxic Cu(II) Complexes with a Novel Quinoline Derivative Ligand: Synthesis, Molecular Docking, and Biological Activity Analysis. ACS Omega, 9(23), 25014-25026. DOI: 10.1021/acsomega.4c02129 , Scopus
  3. Demirbağ, B., Büyükafşar, K., Kaya, H., Yıldırım, M., Bucak, Ö., Ünver, H., Erdoğan, S. (2024). Investigation of the anticancer effect of newly synthesized palladium conjugate Schiff base metal complexes on non-small cell lung cancer cell line and mouse embryonic fibroblast cell line. Biochem Biophys Res Commun, 735, Art.No 150658. DOI: 10.1016/j.bbrc.2024.150658 , Scopus
5

Oboňová B, Valentová J, Litecká M, Pašková Ľ, Hricovíniová J, Bilková A, Bilka F, Horváth B, Habala L. (2024). Novel Copper (II) Complexes with Fluorine-Containing Reduced Schiff Base Ligands Showing Marked Cytotoxicity in the HepG2 Cancer Cell Line. Int. J. Mol. Sci. 25, 9166.

  1. Sindhu I, Singh A. (2025). Nitro Substituted Co(II), Ni(II) and Cu(II) Schiff Base Metal complexes: design, spectral analysis, antimicrobial and in-silico molecular docking investigation. Biometals, 38(1), 297-320. DOI: 10.1007/s10534-024-00655-5 ,Scopus
VI.5 - Účasť na riešení (vedení) najvýznamnejších vedeckých projektov alebo umeleckých projektov za posledných šesť rokov
1

VEGA 2/0055/20 Novosyntetizované deriváty tymolu: vzťah medzi štruktúrou a biologickou aktivitou na in vitro modeli čreva.

Spoluriešiteľ

Hricovínová J, Hricovínová Z, Kozics K. (2021). Antioxidant, cytotoxic, genotoxic, and DNA-protective potential of 2,3-substituted quinazolinones: structure-activity relationship study. Int J Mol Sci, 22(2): 610.

2

VEGA 1/0429/21 Štúdium mechanizmov modulácie zápalu a lipidového metabolizmu laktobacilmi v modeli nealkoholovej tukovej choroby pečene

Spoluriešiteľ

3

GVRFaFUK/1/2023 Syntéza a štúdium vybraných derivátov 1,3,5-triazínu s aminokyselinami ako nových potenciálnych bioaktívnych látok s antioxidačnými a antiproliferačnými vlastnosťami.

Spoluriešiteľ

VII. - Prehľad aktivít v organizovaní vysokoškolského vzdelávania a tvorivých činností

VIII. - Prehľad zahraničných mobilít a pôsobenia so zameraním na vzdelávanie a tvorivú činnosť v študijnom odbore

IX. - Iné relevantné skutočnosti

Dátum poslednej aktualizácie
2025-01-27