Meno a priezvisko:
|
prof. Ing. Vladimír Frecer, DrSc.
|
Typ dokumentu:
|
Vedecko/umelecko-pedagogická charakteristika osoby
|
Názov vysokej školy:
|
Univerzita Komenského v Bratislave
|
Sídlo vysokej školy:
|
Šafárikovo námestie 6, 818 06 Bratislava
|
III.a - Zamestnanie-pracovné zaradenie | III.b - Inštitúcia | III.c - Časové vymedzenie |
---|---|---|
profesor vysokej školy | Farmaceutická fakulta, Univerzita Komenského v Bratislave | 2010 - doteraz |
vedecký pracovník | Ústav experimentálnej onkológie, Slovenská akadémia vied, Bratislava | 1983 - 2010 |
V.1.a - Názov profilového predmetu | V.1.b - Študijný program | V.1.c - Stupeň | V.1.d - Študijný odbor |
---|---|---|---|
Fyzikálna chémia | Farmaceutická chémia | 3. stupeň | Farmácia |
V.2.a - Názov študijného programu | V.2.b - Stupeň | V.2.c - Študijný odbor |
---|---|---|
Farmaceutická chémia | doktorandské štúdium | Farmácia |
V.3.a - Názov odboru habilitačného konania a inauguračného konania | V.3.b - Študijný odbor, ku ktorému je priradený |
---|---|
Farmaceutická chémia | Farmácia |
V.5.a - Názov predmetu | V.5.b - Študijný program | V.5.c - Stupeň | V.5.d - Študijný odbor |
---|---|---|---|
Matematika pre farmaceutov | 1.+2. | Farmácia | |
Physical Chemistry | 1.+2. | Pharmacy | |
Farmakokinetické modelovanie a vývoj liečiv | 1. + 2. | Farmácia | |
Mathematics for Pharmacists | 1. + 2. | Pharmacy | |
Pharmacokinetic Modeling and Drug Design | 1. + 2. | Pharmacy |
Frecer, V., Ho, B., Ding, J. L.: De novo design of potent antimicrobial peptides. Antimicrob. Agents Chemother. 48(9), 3349-3357 (2004). [I.F. = 5,191, Q1, citácie: 133 WoS]
Frecer, V., Ho, B., Ding, J. L.: Interpretation of biological activity data of bacterial endotoxins by simple molecular models of mechanism of action. Eur. J. Biochem. 267(3), 837-852 (2000). [I.F. = 3,579, Q2, citácie: 57 WoS]
Frecer, V.: QSAR Analysis of Antimicrobial and haemolytic effects of cyclic cationic antimicrobial peptides derived from Protegrin-1. Bioorgan. Med. Chem. 14(17), 6065-6074 (2006). [I.F. = 3,641, Q2, citácie: 56 WoS]
Udommaneethanakit, T., Rungrotmongkol, T., Bren, U., Frecer, V., Miertuš, S.: Dynamic behavior of avian influenza A virus neuraminidase subtype H5N1 in complex with oseltamivir, zanamivir, peramivir, and their phosphonate analogues. J. Chem. Inf. Model. 49(10), 2323-2332 (2009). [I.F. = 4,956, Q1, citácie: 51 WoS]
Frecer, V., Kabelac, M., De Nardi, P., Pricl, S., Miertuš, S.: Design of inhibitors of hepatitis C virus NS3 serine protease. J. Mol. Graphics Model. 22(3), 209-220 (2004). [I.F. = 2,518, Q2, citácie: 45 WoS]
Frecer, V.*, Miertus, S.: Antiviral agents against COVID-19: structure-based design of specific peptidomimetic inhibitors of SARS-CoV-2 main protease. RSC Advances 10(66), 40244-40263 (2020). [I.F. = 3,361, Q2, citácie: 32 WoS]
Braccini, S;., Pecorini, G., Chiellini, F., Bakos, D., Miertus, S., Frecer, V.*: Adhesion of fibroblast cells on thin films representing surfaces of polymeric scaffolds of human urethra rationalized by molecular models of integrin binding cell adhesion on polymeric scaffolds for regenerative medicine. J. Biotechnol. 324, 233-238 (2020). [I.F. = 3,307, Q2, citácie: 2 WoS]
Lipnicanova, S., Chmelova, D., Ondrejovic, M., Frecer, V., Miertus, S.: Diversity of sialidases found in the human body - A review. Int. J. Biol. Macromol. 148, 857-868 (2020). [I.F. = 6,953, Q1, citácie: 18 WoS]
Nemčovičová, I., Lopušná, K., Štibrániová, I., Benedetti, F., Berti, F., Felluga, F., Drioli, S., Vidali, M., Katrlík, J., Pažitná, L., Holazová, A., Blahutová, J., Lenhartová, S., Sláviková, M., Klempa, B., Ondrejovič, M., Chmelová, D., Legerská, B., Miertuš, S., Klacsová, M., Uhríková, D., Kerti, L., Frecer, V.*: Identification and evaluation of antiviral activity of novel compounds targeting SARS-CoV-2 virus by enzymatic and antiviral assays, and computational analysis. J. Enz. Inhib. Med. Chem. 39(1), art. no. 2301772 (2024). [I.F. = 5,60, Q1, citácie: 0 WoS]
Kerti, L., Frecer, V.*: Design of inhibitors of SARS-CoV-2 papain-like protease deriving from GRL0617: Structure-activity relationships. Bioorg. Med. Chem. 113, art. no. 117909 (2024). [I.F. = 3,30, Q1, citations: 0 WoS]
Publikácia 1.
a) Costa, L., Sousa, E., Fernandes, C.: Cyclic Peptides in Pipeline: What Future for These Great Molecules? Pharmaceuticals 16(7), art. no. 996 (2023).
b) Wu, Y.M., Chen, K., Wang, J.Z., Chen, M.Z., Chen, Y., She, Y.R., Yan, Z., Liu, R.: Host defense peptide mimicking antimicrobial amino acid polymers and beyond: Design, synthesis and biomedical applications. Prog. Polym. Sci. 141, art. no. 101679 (2023).
c) Modak, B., Girkar, S., Narayan, R., Kapoor, S.: Mycobacterial Membranes as Actionable Targets for Lipid-Centric Therapy in Tuberculosis. J. Med. Chem. 65(4), 3046-3065 (2022).
d) Vishweshwaraiah, Y.L., Acharya, A., Hegde, V., Prakash, B.: Rational design of hyperstable antibacterial peptides for food preservation. NPJ Sci. Food 5(1), art. no. 26 (2021).
e) Shi, W.W., Chen, F.F., Zou, X.M., Jiao, S., Wang, S.Q., Hu, Y., Lan, L.F., Tang, F., Huang, W.: Design, synthesis, and antibacterial evaluation of vancomycin-LPS binding peptide conjugates. Bioorg. Med. Chem. Lett. 45, art. no. 128122 (2021).
Publikácia 2.
a) Tram, N.D.T., Xu, J., Mukherjee, D., Obanel, A.E., Mayandi, V., Selvarajan, V., Zhu, X., Teo, J., Barathi, V.A., Lakshminarayanan, R., Ee, P.L.R.: Bacteria-Responsive Self-Assembly of Antimicrobial Peptide Nanonets for Trap-and-Kill of Antibiotic-Resistant Strains. Adv. Func. Mat. 33(5), art. 10858 (2023).
b) Kumari, T., D.P., Kuldeep, J., Dhanabal, V.B., Verma, N.K., Sahai, R., Tripathi, A.K., Saroj, J., Ali, M., Mitra, K., Siddiqi, M.I., Bhattacharjya, S., Ghosh, J.K.: 10-Residue MyD88-Peptide Adopts beta-Sheet Structure, Self-Assembles, Binds to Lipopolysaccharides, and Rescues Mice from Endotoxin-Mediated Lung-Infection and Death. ACS Chem. Biol. 17(12) 3420-3434 (2022).
c) Achour, A.: Identification of oligopeptides from severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) non structural protein 8 (NSP8) and their imilarities with type 1 angiotensin II receptor key sites. Biomedicine & Pharmacotherapy 141, art. no. 111722 (2021).
d) Cochet, F., Peri, F.: The Role of Carbohydrates in the Lipopolysaccharide (LPS)/Toll-Like
Receptor 4 (TLR4) Signalling. Int. J. Mol. Sci. 18(11), art. no. 2318 (2017).
e) Le, C.F., Fang, C.M., Sekaran, S.D.: Intracellular Targeting Mechanisms by Antimicrobial Peptides. Antimic. Agents Chemother. 61(4), art. no. e02340 (2017).
Publikácia 3.
a) You, Y.H., Liu, H.Y., Zhu, Y.Z., Zheng, H.: Rational design of stapled antimicrobial peptides. Amino Acids 55(4), 421-442 (2023).
b) Jukic, M., Bren, U.: Machine Learning in Antibacterial Drug Design. Front. Pharmacol. 13, art. no. 864412 (2022).
c) Waghu, F.H., Gawde, U., Gomatam, A., Coutinho, E., Idicula-Thomas, S.: A QSAR modeling approach for predicting myeloid antimicrobial peptides with high sequence similarity. Chem. Biol. Drug Des. 96(6), 1408-1417 (2020).
d) Cardoso, M.H., Meneguetti, B.T., Costa, B.O., Buccini, D.F., Oshiro, K.G.N., Preza, S.L.E.,
Carvalho, C.M.E., Migliolo, L., Franco, O.L.: Non-Lytic Antibacterial Peptides That Translocate Through Bacterial Membranes to Act on Intracellular Targets. Int. J. Mol. Sci. 20(19), art. no. 4877 (2019).
e) Chaudhary, K., Kumar, R., Singh, S., Tuknait, A., Gautam, A., Mathur, D., Anand, P., Varshney, G.C., Raghava, G.P.S.: A Web Server and Mobile App for Computing Hemolytic Potency of Peptides. Sci Rep. 6, art. no. 22843 (2016).
Publikácia 4.
a) Shi, L., Zhang, X.Y., Cheng, L.P.: Design, synthesis and biological evaluation of 1,3,4-triazole-3-acetamide derivatives as potent neuraminidase inhibitors. Bioorg. Med. Chem. Lett. 61, art. no. 128590 (2022).
b) Hanpaibool, C., Leelawiwat, M., Takahashi, K., Rungrotmongkol, T.: Source of oseltamivir resistance due to single E119D and double E119D/H274Y mutations in pdm09H1N1 influenza neuraminidase. J. Comp-Aided Mol. Des. 34(1), 27-37 (2020).
c) Shie, J.J., Fang, J.M.: Development of effective anti-influenza drugs: congeners and conjugates - a review. J. Biomed. Sci. 26(1), art. no 84 (2019).
d) Racek, T., Pazurikova, J., Varekova, R.S., Geidl, S., Krenek, A., Falginella, F.L., Horsky, V., Hejret, V., Koca, J.: NEEMP: software for validation, accurate calculation and fast parameterization of EEM charges. J. Cheminform. 8, art. no. 57 (2016).
e) Wang, P.C., Fang, J.M., Tsai, K.C., Wang, S.Y., Huang, W.I., Tseng, Y.C., Cheng, Y.S.E., Cheng, T.J.R., Wong, C.H.: Peramivir Phosphonate Derivatives as Influenza Neuraminidase Inhibitors. J. Med. Chem. 59(11), 5297-5310 (2016).
Publikácia 5.
a) Boonma, T., Nutho, B., Darai, N., Rungrotmongkol, T., Nunthaboot, N., Exploring of paritaprevir and glecaprevir resistance due to A156T mutation of HCV NS3/4A protease: molecular dynamics simulation study. J. Biomol. Struct. Dyn. 40(12), 5283-5294 (2022).
b) Isik, G.O., Ozer, A.N., Prediction of substrate specificity in NS3/4A serine protease by biased sequence search threading. J. Biomol. Struct. Dyn. 35(5), 1102-1114 (2017).
c) Ganesan, A., Barakat, K.: Applications of computer-aided approaches in the development of hepatitis C antiviral agents. Curr. Topics Med. Chem. 16(12), 1351-1361 (2016).
d) Ezat, A.A., Mostafa, H.I., El-Bialy, N.S., Saleh, N.A., Ibrahim, M.A.: Computational Approaches to Study Peptidomimetic and Macrocyclic Hepatitis C Virus NS3 Protease Inhibitors. J. Comput. Theor. Nanosci. 12(1), 52-59 (2015).
e) Weber, F., Brune, S., Korpis, K., Bednarski, P.J., Laurini, E., Dal Col, V., Pricl, S., Schepmann, D., Wunsch, B.: Synthesis, Pharmacological Evaluation, and sigma(1) Receptor Interaction Analysis of Hydroxyethyl Substituted Piperazines. J. Med. Chem. 57(7), 2884-2894 (2014).
APVV-21-0108 Antivirálne liečivá proti COVID-19: Dizajn, syntéza a testovanie aktivity špecifických inhibítorov virálnych proteáz koronavírusu SARS-CoV-2, 2021-2026, zodpovedný riešiteľ
PP-COVID-20-0010 Nové antivirálne liečivá: Dizajn, syntéza a testovanie aktivity nových špecifických inhibítorov virálnych proteáz koronavírusu SARS-CoV-2, 2020-2021, riešiteľ
APVV-17-0239 Počítačový dizajn, syntéza, testovanie a dispozícia inhibítorov neuraminidáz chrípkového vírusu typu A ako potenciálnych antivirálnych látok, 2018-2022, zodpovedný riešiteľ
VEGA 1/0228/17 Výskum antimikrobiálnych látok a ich vplyvu na modelové membrány, 2017-2020, zodpovedný riešiteľ
APVV-15-0111 Vývoj a komplexná charakterizácia biosyntetických tubulárnych 3D-extracelulálnych matríc (skafoldov) ako substituentov poškodenej ľudskej močovej rúry, 2016-2020, riešiteľ
APVV-14-0294 Výroba a testovanie náhrad tvrdých tkanív na mieru z hydroxyapatitu (HA) technológiou 3D tlače, 2015-2019, riešiteľ
VII.a - Aktivita, funkcia | VII.b - Názov inštitúcie, grémia | VII.c - Časové vymedzenia pôsobenia |
---|---|---|
Prodekan pre vedecko-výskumnú činnosť, zahraničné styky a projektovú činnosť | Farmaceutická fakulta UK | 2021 - doteraz |
VIII.a - Názov inštitúcie | VIII.b - Sídlo inštitúcie | VIII.c - Obdobie trvania pôsobenia/pobytu (uviesť dátum odkedy dokedy trval pobyt) | VIII.d - Mobilitná schéma, pracovný kontrakt, iné (popísať) |
---|---|---|---|
International Centre for Science and High Technology, UNIDO | AREA Science Park, Terst, Taliansko | 2000 - 2009 | vedecký poradca |
Department of Biological Sciences, Faculty of Science, National University of Singapore | Singapur | 1997 - 2000 | hosťujúci vedec |
Department of Biochemistry, Biophysics, and Macromolecular Chemistry, Faculty of Chemistry, University of Trieste | Terst, Taliansko | 1996 - 1997 | postdoktorandský pobyt |
Department of Chemistry, Graduate School and University Center, City University of New York | New York, NY, U.S.A. | 1995 | postdoktorandský pobyt |
Laboratory of Mathematical Biology, National Cancer Institute, National Institutes of Health | Bethesda, MD, U.S.A. | 1993 - 1994 | postdoktorandský pobyt |
Department of Physiology and Biophysics, Mount Sinai School of Medicine, City University of New York | New York, NY, U.S.A. | 1989 - 1991 | postdoktorandský pobyt |