Research/art/teacher profile of a person
Name and surname:
Mgr. Jana Hricovíniová, PhD.
Document type:
Research/art/teacher profile of a person
The name of the university:
Comenius University Bratislava
The seat of the university:
Šafárikovo námestie 6, 818 06 Bratislava

I. - Basic information

I.1 - Surname
Hricovíniová
I.2 - Name
Jana
I.3 - Degrees
Msc., PhD.
I.4 - Year of birth
1994
I.5 - Name of the workplace
Faculty of Pharmacy, Comenius University, Department of Cell and Molecular Biology of Drugs
I.6 - Address of the workplace
Kalinčiakova 8, 832 32, Bratislava
I.7 - Position
Assistant professor
I.8 - E-mail address
jana.hricoviniova@uniba.sk
I.9 - Hyperlink to the entry of a person in the Register of university staff
https://www.portalvs.sk/regzam/detail/45708
I.10 - Name of the study field in which a person works at the university
Pharmacy
I.11 - ORCID iD
0000-0001-5098-4122

II. - Higher education and further qualification growth

II.1 - First degree of higher education
II.a - Name of the university or institution
Faculty of Natural Sciences, Comenius university
II.b - Year
2016
II.c - Study field and programme
Biology, Biology
II.2 - Second degree of higher education
II.a - Name of the university or institution
Faculty of Natural Sciences, Comenius university
II.b - Year
2018
II.c - Study field and programme
Biology, Genetics
II.3 - Third degree of higher education
II.a - Name of the university or institution
Faculty of Natural Sciences, Comenius university
II.b - Year
2022
II.c - Study field and programme
Biology, Genetics
II.4 - Associate professor
II.5 - Professor
II.6 - Doctor of Science (DrSc.)

III. - Current and previous employment

III.a - Occupation-position III.b - Institution III.c - Duration
Assistant professor Faculty of Pharmacy, Comenius University September 2022 -

IV. - Development of pedagogical, professional, language, digital and other skills

IV.a - Activity description, course name, other IV.b - Name of the institution IV.c - Year
Presentation skills for PhD.students Slovak Academy of Sciences 2019
Scientific workshops of oncology, popularization-scientific presentations organized for secondary schools Slovak Academy of Sciences 2019, 2020, 2021, 2022

V. - Overview of activities within the teaching career at the university

V.1 - Overview of the profile courses taught in the current academic year according to study programmes
V.2 - Overview of the responsibility for the delivery, development and quality assurance of the study programme or its part at the university in the current academic year
V.3 - Overview of the responsibility for the development and quality of the field of habilitation procedure and inaugural procedure in the current academic year
V.4 - Overview of supervised final theses
V.4.1 - Number of currently supervised theses
V.4.b - Diploma (second degree)
3 diploma theses
V.4.2 - Number of defended theses
V.5 - Overview of other courses taught in the current academic year according to study programmes
V.5.a - Name of the course V.5.b - Study programme V.5.c - Degree V.5.d - Field of study
Microbiology Pharmacy I., II. 7.3.1. Pharmacy
Technology of biological drugs Pharmacy I., II. 7.3.1. Pharmacy
Immunology Phamracy I.,II. 7.3.1. Pharmacy

VI. - Overview of the research/artistic/other outputs

VI.1 - Overview of the research/artistic/other outputs and the corresponding citations
VI.1.1 - Number of the research/artistic/other outputs
VI.1.a - Overall
40
VI.1.b - Over the last six years
37
VI.1.2 - Number of the research/artistic/other outputs registered in the Web of Science or Scopus databases
VI.1.a - Overall
8
VI.1.b - Over the last six years
8
VI.1.3 - Number of citations corresponding to the research/artistic/other outputs
VI.1.a - Overall
35
VI.1.b - Over the last six years
35
VI.1.4 - Number of citations registered in the Web of Science or Scopus databases
VI.1.a - Overall
35
VI.1.b - Over the last six years
35
VI.1.5 - Number of invited lectures at the international, national level
VI.2 - The most significant research/artistic/other outputs
1

Hricovínová J, Ševčovičová A, Hricovínová Z. (2020). Evaluation of the genotoxic, DNA-protective and antioxidant profile of synthetic alkyl gallates and gallotannins using in vitro assays. Toxicol in Vitro, 65: 104789.

2

Hricovínová J, Hricovínová Z, Kozics K. (2021). Antioxidant, cytotoxic, genotoxic, and DNA-protective potential of 2,3-substituted quinazolinones: structure-activity relationship study. Int J Mol Sci, 22(2): 610.

3

Hricovínová Z, Mascaretti Š, Hricovínová J, Čížek A, Jampílek, J. (2021). New unnatural gallotannins: A way toward green antioxidants, antimicrobials and antibiofilm agents. Antioxidants, 10 (8): 1288, 1-19. 

4

Gurgul I., Hricovíniová J., Mazuryk O., Hricovíniová Z., Brindell M. (2023). Enhancement of the Cytotoxicity of Quinazolinone Schiff Base Derivatives with Copper Coordination. Inorganics, 11 (10): 391. 

5

Oboňová B, Valentová J, Litecká M, Pašková Ľ, Hricovíniová J, Bilková A, Bilka F, Horváth B, Habala L. (2024). Novel Copper (II) Complexes with Fluorine-Containing Reduced Schiff Base Ligands Showing Marked Cytotoxicity in the HepG2 Cancer Cell Line. Int. J. Mol. Sci., 25, 9166, 1-18. https://doi.org/10.3390/ijms25179166

6

Pindjakova D, Mascaretti S, Hricovíniová J, Hosek J, Gregorová J, Kos J, Čížek A, Hricovíniová Z, Jampílek J. (2024). Critical view on antimicrobial, antibiofilm and cytotoxic activities of quinazolin-4(3H)-one derived schiff bases and their Cu(II) complexes. Heliyon, 10(7), e29051. doi: 10.1016/j.heliyon.2024.e29051.

VI.3 - The most significant research/artistic/other outputs over the last six years
1

Hricovínová J, Ševčovičová A, Hricovínová Z. (2020) Evaluation of the genotoxic, DNA-protective and antioxidant profile of synthetic alkyl gallates and gallotannins using in vitro assays. Toxicol in Vitro, 65: 104789.

2

Hricovínová J, Hricovínová Z, Kozics K. (2021) Antioxidant, cytotoxic, genotoxic, and DNA-protective potential of 2,3-substituted quinazolinones: structure-activity relationship study. Int J Mol Sci, 22(2): 610.

3

Hricovínová Z, Mascaretti Š, Hricovínová J, Čížek A, Jampílek, J. (2021) New unnatural gallotannins: A way toward green antioxidants, antimicrobials and antibiofilm agents. Antioxidants, 10 (8): 1288, 1-19. 

4

Gurgul I., Hricovíniová J., Mazuryk O., Hricovíniová Z., Brindell M. (2023). Enhancement of the Cytotoxicity of Quinazolinone Schiff Base Derivatives with Copper Coordination. Inorganics, 11 (10): 391. 

5

Oboňová B, Valentová J, Litecká M, Pašková Ľ, Hricovíniová J, Bilková A, Bilka F, Horváth B, Habala L. (2024). Novel Copper (II) Complexes with Fluorine-Containing Reduced Schiff Base Ligands Showing Marked Cytotoxicity in the HepG2 Cancer Cell Line. Int. J. Mol. Sci. 25, 9166, 1-18. https://doi.org/10.3390/ijms25179166

6

Pindjakova D, Mascaretti S, Hricovíniová J, Hosek J, Gregorová J, Kos J, Čížek A, Hricovíniová Z, Jampílek J. (2024). Critical view on antimicrobial, antibiofilm and cytotoxic activities of quinazolin-4(3H)-one derived schiff bases and their Cu(II) complexes. Heliyon 10(7), e29051. doi: 10.1016/j.heliyon.2024.e29051.

VI.4 - The most significant citations corresponding to the research/artistic/other outputs
1

Hricovínová J, Ševčovičová A, Hricovínová Z. (2020). Evaluation of the genotoxic, DNA-protective and antioxidant profile of synthetic alkyl gallates and gallotannins using in vitro assays. Toxicol in Vitro, 65: 104789.

  1. Kostyuk S V, Proskurnina E V, Savinova E A, Ershova E S, Kraevaya O A, Kameneva L V, Umryukhin P E, Dolgikh O A, Kutsev S I, Troshin P A, Veiko N N. (2020). Effects of Functionalized Fullerenes on ROS Homeostasis Determine Their Cytoprotective or Cytotoxic Properties. Nanomaterials (Basel), 10(7):1405. doi.org/10.3390/nano10071405 ,Scopus
  2. Al-Zahrani N A, El-Shishtawy R M, Asiri A M. (2020). Recent developments of gallic acid derivatives and their hybrids in medicinal chemistry: A review. Eur J Med Chem, 204:112609. doi.org/10.1016/j.ejmech.2020.112609 ,Scopus
  3. Liu N, Ni S, Gao H, Chang Y, Fu Y, Liu W, Qin M. (2021). Laccase-Catalyzed Grafting of Lauryl Gallate on Chitosan To Improve Its Antioxidant and Hydrophobic Properties. Biomacromolecules, 22(11): 4501-4509.,Scopus
  4. Figat, R. (2021) Phenolic acids – antigenotoxic compounds from medicinal and edible plants. Prospects in Pharmaceutical Sciences19(4), 28–41. https://doi.org/10.56782/pps.9 , Scopus
  5. He, FH. (2022). Recognition of Gallotannins and the Physiological Activities: From Chemical View. Front Nutr, 9: 888892.; Scopus
  6. He, FH. (2022). "Gallotannins" (book chapter), In Handbook of Food Bioactive Ingredients: Properties and Applications, Springer International Publishing, p. 427 - 441, Scopus
  7. Avuloglu Yilmaz E, Yuzbasioglu D, Unal F. (2023). Investigation of genotoxic effect of octyl gallate used as an antioxidant food additive in in vitro test systems. Mutagenesis;38(3):151-159. doi: 10.1093/mutage/gead005.; Scopus
  8. Encarnação, S.; Lima, K.; Malú, Q.; Caldeira, G.I.; Duarte, M.P.; Rocha, J.; Lima, B.S.; Silva, O. (2024). An Integrated Approach to the Anti-Inflammatory, Antioxidant, and Genotoxic Potential of Portuguese Traditional Preparations from the Bark of Anacardium occidentale L. Plants, 13, 420.  https://doi.org/10.3390/plants13030420 , Scopus
2

Hricovínová J, Hricovínová Z, Kozics K. (2021). Antioxidant, cytotoxic, genotoxic, and DNA-protective potential of 2,3-substituted quinazolinones: structure-activity relationship study. Int J Mol Sci, 22(2): 610.

  1. Mravljak J, Slavec L, Hrast, M, Sova, M. (2021) Synthesis and Evaluation of Antioxidant Properties of 2-Substituted Quinazolin-4(3H)-ones. Molecules, 26 (21), 6585. doi.org/10.3390/molecules26216585; Scopus
  2. Karan R, Agarwal P, Sinha M, Mahato N. (2021) Recent Advances on Quinazoline Derivatives: A Potential Bioactive Scaffold in Medicinal Chemistry. Chem Engineering, 5: 73. doi.org/10.3390/chemengineering5040073, Scopus
  3. Wang, W., Zou, P. S., Pang, L., Pan, C. X., Mo, D. L., & Su, G. F. (2022). Recent advances in the synthesis of 2, 3-fused quinazolinones. Organic & Biomolecular Chemistry20(32), 6293-6313. DOI https://doi.org/10.1039/D2OB00778A ; Scopus
  4. Gomaa HAM. (2022) A comprehensive review of recent advances in the biological activities of quinazolines. Chem Biol Drug Des.;100(5):639-655. doi: 10.1111/cbdd.14129., Scopus
  5. Zayed, M. F. (2022). Medicinal Chemistry of Quinazolines as Analgesic and Anti-Inflammatory Agents. ChemEngineering6(6), 94. 10.3390/chemengineering6060094,Scopus
  6. Hricovini, M.,Jampilek. (2023) J. Chemistry towards Biology.  Int. J. Mol. Sci. , 24, 3998. https://doi.org/10.3390/ijms24043998;, Scopus
  7. Zayed, M.F. (2023) Medicinal Chemistry of Quinazolines as Anticancer Agents Targeting Tyrosine Kinases.  Sci. Pharm. , 91, 18. https://doi.org/10.3390/scipharm91020018 ,Scopus
  8. Hima, P., Tomasini, M., Paater, A., Dey,R. (2024). KOtBu Mediated Alcohol Dehydrogenation Strategy: Synthesis of 2-Aryl Quinazolinones. ChemistrySelect, 9(11), Article number e202400468, doi: 10.1002/slct.202400468, Scopus
  9. Tirehdast, A., Sheikhi-Mohammareh, S., Sabet-Sarvestani, H., Organ, M.G., Semeniuchenko, V., Shiri, A. (2024). Design and synthesis of novel main protease inhibitors of COVID-19: quinoxalino[2,1-b]quinazolin-12-ones. RSC Advances, 14(40), 29122-29133, https://doi.org/10.1039/d4ra06025c, Scopus
  10. Vageesh, M., Patil, O., Hima, P., Dey, R. (2024). Acceptorless Dehydrogenation under Neat Reaction Conditions: Synthesis of 2-Aryl/Alkyl Quinazolinones Using Supported Ni NPs as Catalyst. Synlett, 35(20), 2496 – 2502, doi: 10.1055/a-2388-9487, Scopus
  11. Bala, I.A., Asiri, A.M., El-Shishtawy, R.M. (2024). Quinazoline derivatives and hybrids: recent structures with potent bioactivity. Medicinal Chemistry Research. 33(12), 2372 – 2419, DOI:10.1007/s00044-024-03318-9, Scopus

3

Hricovínová Z, Mascaretti Š, Hricovínová J, Čížek A, Jampílek, J. (2021). New unnatural gallotannins: A way toward green antioxidants, antimicrobials and antibiofilm agents. Antioxidants, 10 (8): 1288, 1-19. 

  1. Volynets G, Vyshniakova H, Nitulescu G, Nitulescu GM, Ungurianu A, Margina D, Moshynets O, Bdzhola V, Koleiev I, Iungin O, Tarnavskiy S, Yarmoluk S. (2021) Identification of Novel Antistaphylococcal Hit Compounds Targeting Sortase A. Molecules, 26: 7095. doi.org/10.3390/molecules26237095; Scopus
  2. He, FH. (2022) Recognition of Gallotannins and the Physiological Activities: From Chemical View. Front Nutr, 9: 888892.; Scopus
  3. He, FH. (2022) "Gallotannins" (book chapter), In Handbook of Food Bioactive Ingredients: Properties and Applications, Springer International Publishing, p. 427 - 441, Scopus 
  4. Villanueva X, Zhen L, Ares JN, Vackier T, Lange H, Crestini C, Steenackers HP. (2023) Effect of chemical modifications of tannins on their antimicrobial and antibiofilm effect against Gram-negative and Gram-positive bacteria. Front Microbiol.;13:987164. doi: 10.3389/fmicb.2022.987164, Scopus
  5. Tiwana, G., Cock, I. E., & Cheesman, M. J. (2024). Combinations of Terminalia bellirica (Gaertn.) Roxb. and Terminalia chebula Retz. Extracts with Selected Antibiotics Against Antibiotic-Resistant Bacteria: Bioactivity and Phytochemistry. Antibiotics13(10), 994. https://doi.org/10.3390/antibiotics13100994, Scopus
  6. Jo, D.-M., Tabassum, N., Oh, D. K., Ko, S.-C., Kim, K. W., Yang, D., Kim, J.-Y., Oh, G.-W., Choi, G., Lee, D.-S., Park, S.-K., Kim, Y.-M., & Khan, F. (2024). Green Medicine: Advancing Antimicrobial Solutions with Diverse Terrestrial and Marine Plant-Derived Compounds. Processes12(11), 2316. https://doi.org/10.3390/pr12112316 , Scopus
  7. Wang, M., Luo, J., Li, H.,Ge, C.,Jing, F.,Guo, J.,Zhang, Q., Gao, X., Cheng, C., Zhou, D. (2024). Synergistic effect of foliar exposure to TiO2 nanoparticles and planting density modulates the metabolite profile and transcription to alleviate cadmium induced phytotoxicity to wheat (Triticum aestivum L.). Environmental Science: Nano.,12(1), 879 – 893. DOI: 10.1039/d4en00763h, Scopus
4

Gurgul I., Hricovíniová J., Mazuryk O., Hricovíniová Z., Brindell M. (2023). Enhancement of the Cytotoxicity of Quinazolinone Schiff Base Derivatives with Copper Coordination. Inorganics, 11 (10): 391. 

  1. Balewski, Ł., Plech, T., Korona-Głowniak, I., Hering, A., Szczesio, M. et al. (2024). Copper(II) Complexes with 1-(Isoquinolin-3-yl)heteroalkyl-2-ones: Synthesis, Structure and Evaluation of Anticancer, Antimicrobial and Antioxidant Potential. International Journal of Molecular Sciences, 25(1)8; https://doi.org/10.3390/ijms25010008 , Scopus
  2. Shumi, G., Demissie, T.B., Koobotse, M., Kenasa, G., Beas, I.N., Zachariah, M., Desalegn, T. (2024). Cytotoxic Cu(II) Complexes with a Novel Quinoline Derivative Ligand: Synthesis, Molecular Docking, and Biological Activity Analysis. ACS Omega, 9(23), 25014-25026. DOI: 10.1021/acsomega.4c02129 ,Scopus
  3. Demirbağ, B., Büyükafşar, K., Kaya, H., Yıldırım, M., Bucak, Ö., Ünver, H., Erdoğan, S. (2024). Investigation of the anticancer effect of newly synthesized palladium conjugate Schiff base metal complexes on non-small cell lung cancer cell line and mouse embryonic fibroblast cell line. Biochem Biophys Res Commun, 735, Art.No 150658. DOI: 10.1016/j.bbrc.2024.150658 ,Scopus
5

Oboňová B, Valentová J, Litecká M, Pašková Ľ, Hricovíniová J, Bilková A, Bilka F, Horváth B, Habala L. (2024). Novel Copper (II) Complexes with Fluorine-Containing Reduced Schiff Base Ligands Showing Marked Cytotoxicity in the HepG2 Cancer Cell Line. Int. J. Mol. Sci. 25, 9166.

  1. Sindhu I, Singh A. (2025). Nitro Substituted Co(II), Ni(II) and Cu(II) Schiff Base Metal complexes: design, spectral analysis, antimicrobial and in-silico molecular docking investigation. Biometals, 38(1), 297-320. DOI: 10.1007/s10534-024-00655-5 ,Scopus
VI.5 - Participation in conducting (leading) the most important research projects or art projects over the last six years
1

VEGA 2/0055/20 Newly synthetized thymol derivatives: relationship between structure and biological activity in colorectal in vitro model.

Co-Investigator

Hricovínová J, Hricovínová Z, Kozics K. (2021). Antioxidant, cytotoxic, genotoxic, and DNA-protective potential of 2,3-substituted quinazolinones: structure-activity relationship study. Int J Mol Sci, 22(2): 610.

2

VEGA 1/0429/21 Study of modulation mechanisms of inflammation and lipid metabolism by lactobacilli in the model of nonalcoholic fatty liver disease

Co-Investigator

3

GVRFaFUK/1/2023 Synthesis and study of selected 1,3,5-triazine derivatives with amino acids as new potential bioactive compounds with antioxidant and anti-proliferative properties.

Co-Investigator

VII. - Overview of organizational experience related to higher education and research/artistic/other activities

VIII. - Overview of international mobilities and visits oriented on education and research/artistic/other activities in the given field of study

IX. - Other relevant facts

Date of last update
2025-01-27