Meno a priezvisko:
|
MSc. Jaroslav Valovčan, PhD.
|
Typ dokumentu:
|
Vedecko/umelecko-pedagogická charakteristika osoby
|
Názov vysokej školy:
|
Univerzita Komenského v Bratislave
|
Sídlo vysokej školy:
|
Šafárikovo námestie 6, 818 06 Bratislava
|
III.a - Zamestnanie-pracovné zaradenie | III.b - Inštitúcia | III.c - Časové vymedzenie |
---|---|---|
vysokoškolský učiteľ - odborný asistent | Univerzita Komenského v Bratislave, Fakulta matematiky, fyziky a informatiky | 1. 9. 2024 - |
vysokoškolský učiteľ - odborný asistent (95%) | Univerzita Komenského v Bratislave, Fakulta matematiky, fyziky a informatiky | 1. 9. 2023 - 31. 8. 2024 |
V.5.a - Názov predmetu | V.5.b - Študijný program | V.5.c - Stupeň | V.5.d - Študijný odbor |
---|---|---|---|
Fyzika planéty Zem | fyzika | I. | fyzika |
Valovcan, J., Moczo, P., Kristek, J., Galis, M., Kristekova, M., 2024. How Accurate Numerical Simulation of Seismic Waves in a Heterogeneous Medium Can Be? Bull. Seismol. Soc. Am. , 114 (5), 2287-2309, doi: 10.1785/0120240049
Valovcan, J., Moczo, P., Kristek, J., Galis, M., Kristekova, M., 2023. Can Higher-order Finite-difference Operators be Applied Across a Material Interface? Bull. Seismol. Soc. Am. 114, 1924-1937, doi: 10.1785/0120230037
Moczo, P., Kristek, J., Kristekova, M., Valovcan, J., Galis, M., Gregor, D., 2022. Material Interface in the Finite-Difference Modeling: A Fundamental View. Bull. Seismol. Soc. Am. 113, 281-296 doi: 10.1785/0120220133
Valovcan, J., Moczo, P., Kristek, J., Galis, M., Kristekova, M., 2024. How Accurate Numerical Simulation of Seismic Waves in a Heterogeneous Medium Can Be? Bull. Seismol. Soc. Am. , 114 (5), 2287-2309, doi: 10.1785/0120240049
Valovcan, J., Moczo, P., Kristek, J., Galis, M., Kristekova, M., 2023. Can Higher-order Finite-difference Operators be Applied Across a Material Interface? Bull. Seismol. Soc. Am. 114, 1924-1937, doi: 10.1785/0120230037
Moczo, P., Kristek, J., Kristekova, M., Valovcan, J., Galis, M., Gregor, D., 2022. Material Interface in the Finite-Difference Modeling: A Fundamental View. Bull. Seismol. Soc. Am. 113, 281-296 doi: 10.1785/0120220133
Xu, J., Hu, H., & Han, B. (2023). 3-D simulation of wave propagation in the fractured porous media for subsurface sensing: a rotated staggered Finite-Difference algorithm based on equivalent medium theory. IEEE Transactions on Geoscience and Remote Sensing, 61, 1–10. https://doi.org/10.1109/tgrs.2023.3326615
Petrov, I. B., Golubev, V. I., Shevchenko, A. V., & Nikitin, I. S. (2023). Approximation of boundary condition in higher Order Grid-Characteristic schemes. Doklady Mathematics, 108(3), 466–471. https://doi.org/10.1134/s1064562423701375
Masson, Y., Lyu, C., Moczo, P., Capdeville, Y., Romanowicz, B., & Virieux, J. (2024). 2-D seismic wave propagation using the distributional finite-difference method: further developments and potential for global seismology. Geophysical Journal International, 237(1), 339–363. https://doi.org/10.1093/gji/ggae025
Jiang, L., & Zhang, W. (2024). Efficient implementation of equivalent medium parameterization in finite-difference seismic wave simulation methods. Geophysical Journal International, 239(1), 675–693. https://doi.org/10.1093/gji/ggae286
Sun, W., Zhang, W., Wang, W., & Chen, X. (2024). Multidomain finite-difference and Chebyshev pseudospectral hybrid method for elastic wave simulation: two-dimensional case. Geophysical Journal International. https://doi.org/10.1093/gji/ggae395