Name and surname:
|
RNDr. Martin Truchlý, PhD.
|
Document type:
|
Research/art/teacher profile of a person
|
The name of the university:
|
Comenius University Bratislava
|
The seat of the university:
|
Šafárikovo námestie 6, 818 06 Bratislava
|
III.a - Occupation-position | III.b - Institution | III.c - Duration |
---|---|---|
R&D employee | STATON Ltd. | 01/03/2015 – 30/11/2015 |
Research fellow | Faculty of mathematics, physics and informatics, Comenius University in Bratislava | 01/07/2014 – now |
T. Plecenik, M. Moško, A.A. Haidry, P. Ďurina, M. Truchlý, B. Grančič, M. Gregor, T. Roch, L. Satrapinskyy, A. Mošková, M. Mikula, P. Kúš, A. Plecenik, Fast highly-sensitive room-temperature semiconductor gas sensor based on the nanoscale Pt-TiO2-Pt sandwich, Sens. Act. B: Chem. 207, 351-361 (2015).
M. Truchlý, T. Plecenik, O. Krško, M. Gregor, L. Satrapinskyy, T. Roch, B. Grančič, M. Mikula, A. Dujavová, Š. Chromík, P. Kúš, A. Plecenik, Studies of YBa2Cu3O6+x degradation and surface conductivity properties by Scanning Spreading Resistance Microscopy, Physica C 483, 61 (2012).
M. Truchlý, T. Plecenik, K. Sečianska, M. Gregor, M. Zahoran, M. Vargová, M. Mikula, B. Grančič, G. Plesch, S.A.M. Tofail, P. Kúš, A. Plecenik, Surface potential patterning of hydroxyapatite films by focused electron beam: Influence of the electron energy, Appl. Surf. Sci. 269, 184 (2012).
M. Truchlý, T. Plecenik, E. Zhitlukhina, M. Belogolovskii, M. Dvoranová, P. Kúš, A. Plecenik, Inverse polarity of the resistive switching effect and strong inhomogeneinty in nanoscale YBCO-metal contacts, J. Appl. Phys. 120, 185302 (2016).
M. Vidiš, M. Truchlý, V. Izai, T. Fiantok, T. Roch, L. Satrapinskyy, V. Šroba, P. Ďurina, Š. Nagy, P. Kúš, M. Mikula, Thermal evolution of yttrium tetraboride thin films – A candidate for high temperature applications, Surf. Coatings Techn. 439, 128443 (2022).
T. Fiantok, V. Šroba, N. Koutná, V. Izai, T. Roch, M. Truchlý, M. Vidiš, L. Satrapinskyy, Š. Nagy, B. Grančič, P. Kúš, M. Mikula, Structure evolution and mechanical properties of co-sputtered Zr-Al-B2 thin films, J. Vac. Sci. Technol. A 40, 033414 (2022).
M. Vidiš, M. Truchlý, V. Izai, T. Fiantok, T. Roch, L. Satrapinskyy, V. Šroba, P. Ďurina, Š. Nagy, P. Kúš, M. Mikula, Thermal evolution of yttrium tetraboride thin films – A candidate for high temperature applications, Surf. Coatings Techn. 439, 128443 (2022).
V. Šroba, T. Fiantok, M. Truchlý, T. Roch, M. Zahoran, B. Grančič, P. Švec Jr, Š. Nagy, V. Izai, P. Kúš, M. Mikula, Structure evolution and mechanical properties of hard tantalum diboride films, J. Vac. Sci. Technol. A 38, 033408 (2020).
K. Viskupová, V. Šroba, J. Lu, D. Primetzhofer, B. Wicher, V. Rogoz, T. Roch, M. Truchlý, M. Mikula, I. Petrov, L. Hultman, G. Greczynski, W-ion irradiation promotes dense TiBx film growth during magnetron sputtering without substrate heating, Surf. Coatings Techn. 497 (2025) 131766.
M. Vidiš, T. Fiantok, M. Gocník, P. Švec Jr., Š. Nagy, M. Truchlý, V. Izai, T. Roch, L. Satrapinskyy, V. Šroba, M. Meindlhumer, B. Grančič, P. Kúš, J. Keckes, M. Mikula, Hardness and fracture toughness enhancement in transition metal diboride multilayer films with structural variations, Materialia 34 (2024) 102070.
VEGA 1/0381/19
High-temperature hard nanostructured diboride-based thin films
Hard nanostructured thin films are characterized by thermal stability, abrasion and oxidation resistance at elevated temperatures and therefore they are used in industry in demanding applications. Current research focuses on maintaining nanostructure and excellent mechanical properties of hard thin films at temperatures exceeding 1000°C. Ternary diborides M1-xM1-xB2 (M=Y,Ti,Zr,Nb,Ta) represent promising materials suitable for the preparation of thin films for these extreme conditions. They form solid solutions in the films, whose decomposition at high temperatures leads to the formation of stable nanostructure retaining high hardness at even higher temperatures. Most of these materials in the form of thin films have not been experimentally studied; their properties are mainly published from a theoretical point of view. The project deals with the experimental development of thin layers based on ternary diborides that retain their properties at temperatures >1000°C, using
progressive deposition technologies.
post: principal investigator
VEGA 1/0296/22
Transition-metal diborides-based hard films prepared by advanced PVD methods
The thin films based on transition-metal diboride are a promising alternative to the nitride films, particularly in thermally and mechanically challenging applications. An extremely high hardness (> 40 GPa) and high-temperature chemical stability were achieved in binary diborides. However, their drawbacks are the inherently low toughness and lower oxidation resistance at high temperatures. The theoretical predictions and experimental approaches indicate that high hardness does not mean low toughness and proper alloying leads to increased oxidation resistance. In addition to high hardness, some diborides also have interesting tribological properties at high temperatures. The present project is based on new approaches to the preparation of hard and/or tribological nanostructured thin films by advanced physical vapor deposition (PVD) methods with a high ionization degree of sputtered material (HiPPIMS) or with a high density of working gas ions (HiTUS).
post: principal investigator