Name and surname:
|
RNDr. Michal Pospíšil, PhD.
|
Document type:
|
Research/art/teacher profile of a person
|
The name of the university:
|
Comenius University Bratislava
|
The seat of the university:
|
Šafárikovo námestie 6, 818 06 Bratislava
|
III.a - Occupation-position | III.b - Institution | III.c - Duration |
---|---|---|
Assistant professor | Comenius University in Bratislava, Faculty of Mathematics, Physics and Informatics | 2015 - present |
Assistant professor | Brno University of Technology | 2012 - 2015 |
V.1.a - Name of the profile course | V.1.b - Study programme | V.1.c - Degree | V.1.d - Field of study |
---|---|---|---|
Mathematics (3) | Physics | I. | Physics |
Dynamical Systems | Mathematics | II. | Mathematics |
Seminar in TEX | Mathematics | I. | Mathematics |
Matematics (4) | Physics | I. | Physics |
Topology | Mathematics | I. | Mathematics |
Mathematical Analysis (4) | Mathematics | I. | Mathematics |
Basics of Mathematics (3) | Biomedical Physics | I. | Physics |
M. Fečkan and M. Pospíšil, Poincaré-Andronov-Melnikov Analysis for Non-Smooth Systems, Academic Press Eastbourne, UK, 2016
M. Fečkan, J. Wang, and M. Pospíšil, Fractional-Order Equations and Inclusions, Walter de Gruyter GmbH Berlin, Germany, 2017
M. Pospíšil and L. Pospíšilová Škripková, Sturm's theorems for conformable fractional differential equations, Mathematical Communications 21(2), 273-281, 2016
M. Medveď and M. Pospíšil, Sufficient conditions for the asymptotic stability of nonlinear multidelay differential equations with linear parts defined by pairwise permutable matrices, Nonlinear Analysis: Theory, Methods & Applications 75(7), 3348-3363, 2012
M. Pospíšil, Representation and stability of solutions of systems of functional differential equations with multiple delays, Electronic Journal of Qualitative Theory of Differential Equations (54), 1-30, 2012
M. Pospíšil, Representation of solutions of systems of linear differential equations with multiple delays and nonpermutable variable coefficients, Mathematical Modelling and Analysis 25(2), 303-322, 2020, DOI: 10.3846/mma.2020.11194
M. Franca and M. Pospíšil, New global bifurcation diagrams for piecewise smooth systems: transversality of homoclinic points does not imply chaos, Journal of Differential Equations 266(2-3), 1429-1461, 2019, DOI: 10.1016/j.jde.2018.07.078
V. Kajanovičová, B. Novotný, and M. Pospíšil, Ramsey model with non-constant population growth, Mathematical Social Sciences 104, 40-46, 2020, DOI: 10.1016/j.mathsocsci.2020.01.004
M. Danca, M. Fečkan, and M. Pospíšil, Difference equations with impulses, Opuscula Mathematica 39(1), 5-22, 2019, DOI: 10.7494/OpMath.2019.39.1.5
M. Fečkan, M. Pospíšil, M. Danca, and J. Wang, Caputo delta weakly fractional difference equations, Fractional Calculus and Applied Analysis 25(6), 2222-2240, 2022, DOI: 10.1007/s13540-022-00093-5
M. Medveď, M. Pospíšil, and L. Škripková, On exponential stability of nonlinear fractional multidelay integro-differential equations defined by pairwise permutable matrices, Applied Mathematics and Computation 227, 456-468, 2014
[o1] 2017 Čermák, J. - Došlá, Z. - Kisela, T.: Fractional differential equations with a constant delay: Stability and asymptotics of solutions. In: Applied Mathematics and Computation, Vol. 298, 2017, s. 336-350 - SCI ; SCOPUS
M. Pospíšil, Representation and stability of solutions of systems of functional differential equations with multiple delays, Electronic Journal of Qualitative Theory of Differential Equations (54), 1-30, 2012
[o1] 2014 Diblik, J. - Moravkova, B.: Representation of the solutions of linear discrete systems with constant coefficients and two delays. In: Abstract and Applied Analysis, Vol. 2014, 2014, Art. No. 320476 - SCI ; SCOPUS
M. Pospíšil and L. Pospíšilová Škripková, Sturm's theorems for conformable fractional differential equations, Mathematical Communications 21(2), 273-281, 2016
[o3] 2019 Elhadj, Z.: Dynamical Systems: Theories and Applications. London : CRC Press, Taylor & Francis Group, 2019, S. 379
M. Fečkan and M. Pospíšil, Bifurcation of sliding periodic orbits in periodically forced discontinuous systems, Nonlinear Analysis: Real World Applications 14(1), 150-162, 2013
[o1] 2017 Akhmet, M. - Kashkynbayev, A.: Bifurcation in Autonomous and Nonautonomous Differential Equations with Discontinuities : Nonlinear Physical Science. Singapore : Springer, 2017, S. 1-166 - BKCI-S
M. Franca and M. Pospíšil, New global bifurcation diagrams for piecewise smooth systems: transversality of homoclinic points does not imply chaos, Journal of Differential Equations 266(2-3), 1429-1461, 2019
[o1] 2020 Burra, L. - Zanolin, F.: Chaos in a periodically perturbed second-order equation with signum nonlinearity. In: International Journal of Bifurcation and Chaos, Vol. 30, 2020, Art. No. 2050031 (9 pages)
VEGA 1/0084/23 Qualitative properties of nonlinear differential equations of integer and noninteger order (principal investigator RNDr. Michal Pospíšil, PhD.) 2023-2026, principal investigator
APVV-23-0039 Qualitative properties of evolution problems from science and technology (principal investigator prof. RNDr. Michal Fečkan, DrSc.) 2024-2028, investigator
VEGA 1/0358/20 Qualitative properties of nonlinear differential equations of integer and noninteger order (principal investigator RNDr. Michal Pospíšil, PhD.) 2020-2022, principal investigator
VEGA 2/0062/24 Qualitative properties and bifurcations of differential equations and dynamical system (principal investigator prof. RNDr. Michal Fečkan, DrSc.) 2024-2027, scientific co-worker
APVV-18-0308 Nonlinear phenomena in dynamical systems from science and technology (principal investigator prof. RNDr. Marek Fila, DrSc.) 2019-2023, investigator