Name and surname:
|
Dr. Hana Šmitala Mizerová
|
Document type:
|
Research/art/teacher profile of a person
|
The name of the university:
|
Comenius University Bratislava
|
The seat of the university:
|
Šafárikovo námestie 6, 818 06 Bratislava
|
III.a - Occupation-position | III.b - Institution | III.c - Duration |
---|---|---|
assistant professor | Faculty of Mathematics, Physics, and Informatics of the Comenius University in Bratislava | since 27.2.2018 (maternity and parental leave 19.1.2020 - 31.8.2022) |
postdoc researcher | Institute of Mathematics of the Czech Academy of Sciences | 1.10.2017 - 31.1.2018 |
postdoc researcher, research assistant | Faculty of Physics, Mathematics and Computer Science of the Johannes Gutenberg University in Mainz | 15.12.2015 - 30.9.2017 and 1.9.2012 - 9.12.2012 |
IV.a - Activity description, course name, other | IV.b - Name of the institution | IV.c - Year |
---|---|---|
SPP2410 Workshop: Analysis of Dissipation in Inviscid and Compressible Fluid Dynamics | Universität Konstanz, Germany | 2024 |
Algoritmy 2024, minisymposium Advanced numerical methods for dissipative systems | Slovak Technical University, Podbanské, Slovakia | 2024 |
Numerical methods for hyperbolic problems (NumHyp) 2019 | Instituto de Estudios Portuarios, Málaga, Spain | 2019 |
KI-Net Young Researchers Workshop: Stochastic and deterministic methods in kinetic theory | Duke University, North Carolina, USA | 2016 |
Oberwolfach Seminar: Different Mathematical Perspectives on Description of Unresolved Scales in Multiscale Systems | Oberwolfach Research Institute for Mathematics, Germany | 2016 |
participation at 20+ international workshops, courses and summer/winter schools | mathematical fluid dynamics | 2012 - 2024 |
V.1.a - Name of the profile course | V.1.b - Study programme | V.1.c - Degree | V.1.d - Field of study |
---|---|---|---|
Numerical Methods for Solving ODEs | Mathematics | 3 | Mathematics |
Variational Methods in Differential Equations | Mathematics | 2 | Mathematics |
Finite Element Method (1) | Mathematics | 2 | Mathematics |
Finite Element Method (2) | Mathematics | 2 | Mathematics |
Integral Transformations and Special Functions | Mathematics | 2 | Mathematics |
V.5.a - Name of the course | V.5.b - Study programme | V.5.c - Degree | V.5.d - Field of study |
---|---|---|---|
Numerical Mathematics (2) - tutorial | Managerial Mathematics, Mathematics | 1 | Mathematics |
Mathematical Analysis (2) - tutorial | Informatics | 1 | Informatics |
E. Feireisl, M. Lukáčová-Medvid’ová, H. Mizerová, B. She:
Numerical analysis of compressible fluid flows (monograph)
Series: Modeling, Simulation, and Applications, Springer (2021)
The main message of our recently published book is the new approach in the numerical analysis of nonlinear equations arising in fluid dynamics in the spirit of the Lax Equivalence Principle in the context of linear problems: ”stability + consistency , convergence.”
It contains original results based on dissipative measure-valued solutions, weak-strong uniqueness and K−convergence which are used not only to prove convergence of various numerical schemes but also to solve the problem of oscillatory solutions.
E. Feireisl, M. Lukáčová-Medvid’ová, H. Mizerová:
Convergence of finite volume schemes for the Euler equations via dissipative measure–valued solutions,
Foundations of Computational Mathematics 20 (2020), p. 923–966;
DOI: https://doi.org/10.1007/s10208-019-09433-z
Since the multi-dimensional Euler equations are ill-posed in the class of weak solutions for L1−initial data, here we propose to investigate the convergence in the framework of dissipative measure–valued solutions. We study a class of entropy stable finite volume schemes for the barotropic and complete compressible Euler equations, and show that numerical solutions converge pointwise to the regular solution of the limit systems at least on the lifespan of the latter.
E. Feireisl, M. Lukáčová-Medvid’ová, H. Mizerová:
A finite volume scheme for the Euler system inspired by the two velocities approach,
Numerische Mathematik 144 (2020), p. 89-–132;
DOI: https://doi.org/10.1007/s00211-019-01078-y
As far as we know this is the first convergence result for a finite volume method for multi–dimensional Euler equations, where the convergence has been proven assuming only that the gas remains in its non–degenerate region.
E. Feireisl, M. Lukáčová-Medvid’ová, H. Mizerová, B. She:
Convergence of a finite volume scheme for the compressible Navier-Stokes system,
ESAIM: Mathematical Modelling and Numerical Analysis 53(6) (2019), p. 1957–1979;
DOI: https://doi.org/10.1051/m2an/2019043
To the best of our knowledge this is the first proof of convergence of a finite volume method
for the multi-dimensional compressible barotropic Navier–Stokes equations assuming
only the existence of the strong solution. Moreover, the adiabatic coefficient stays in a
physically reasonable range between 1 and 2.
M. Lukácová-Medvid’ová, H. Mizerová, Š. Necasová, M. Renardy:
Global existence result for the generalized Peterlin viscoelastic model,
SIAM Journal on Mathematical Analysis 49(4) (2017), p. 2950–2964;
DOI: https://doi.org/10.1137/16M1068505
The paper contains a proof of existence of large-data global-in-time weak solutions to a class of differential models of viscoelastic flows with diffusive stress. Moreover, classical solutions are shown to exist under stronger assumptions in the case of creeping flows and two-dimensional flows.
E. Feireisl, M. Lukáčová-Medvid’ová, H. Mizerová, B. She:
Numerical analysis of compressible fluid flows (monograph)
Series: Modeling, Simulation, and Applications, Springer (2021)
E. Feireisl, M. Lukáčová-Medvid’ová, H. Mizerová:
Convergence of finite volume schemes for the Euler equations via dissipative measure–valued solutions,
Foundations of Computational Mathematics 20 (2020), p. 923–966;
DOI: https://doi.org/10.1007/s10208-019-09433-z
E. Feireisl, M. Lukáčová-Medvid’ová, H. Mizerová:
A finite volume scheme for the Euler system inspired by the two velocities approach,
Numerische Mathematik 144 (2020), p. 89-–132;
DOI: https://doi.org/10.1007/s00211-019-01078-y
E. Feireisl, M. Lukáčová-Medvid’ová, H. Mizerová, B. She:
Convergence of a finite volume scheme for the compressible Navier-Stokes system,
ESAIM: Mathematical Modelling and Numerical Analysis 53(6) (2019), p. 1957–1979;
DOI: https://doi.org/10.1051/m2an/2019043
D. Basarić, E. Feireisl, M. Lukáčová-Medvid’ová, H. Mizerová, Y.Yuan:
Penalization method for the Navier-Stokes-Fourier system,
ESAIM: M2AN 56(6) (2022)
DOI: https://doi.org/10.1051/m2an/2022063
Beddrich, J., Süli, E., Wohlmuth, B.:
Numerical simulation of the time-fractional Fokker–Planck equation and applications to polymeric fluids,
Journal of Computational Physics, 2024, 497
DOI: 10.1016/j.jcp.2023.112598
(two of our documents cited)
Carrillo, J.A., Dębiec, T., Gwiazda, P., Świerczewska-Gwiazda, A.:
DISSIPATIVE MEASURE-VALUED SOLUTIONS TO THE EULER-POISSON EQUATION,
SIAM Journal on Mathematical Analysis, 2024, 56(1), pp. 304-335
DOI: 10.1137/22M1525983
Westdickenberg, M.:
Minimal Acceleration for the Multi-dimensional Isentropic Euler Equations,
Archive for Rational Mechanics and Analysis, 2023, 247(3), 35
DOI: 10.1007/s00205-023-01864-x
Lanthaler, S., Mishra, S., Parés-Pulido, C.:
Statistical solutions of the incompressible Euler equations,
Mathematical Models and Methods in Applied Sciences, 2021, 31(2), pp. 223–292
DOI: 10.1142/S0218202521500068
Breit, D., Mensah, P.R.:
An Incompressible Polymer Fluid Interacting with a Koiter Shell,
Journal of Nonlinear Science, 2021, 31(1), 25
DOI: 10.1007/s00332-021-09678-5
01/2024 - 12/2027 principal investigator
VEGA grant 1/0709/24 Numerical analysis in compressible fluid dynamics
07/2024 - 06/2028 team member
APVV-23-0039 Qualitative properties of evolution problems from science and technology
01/2024 - 12/2026 team member
GAČR Grant GA24-11034S Dissipative systems in fluid dynamics
01/2023 - 12/2024 team member
VEGA grant 1/0084/23 Qualitative properties of nonlinear differential equations of both integer and non-integer orders
01/2021 - 12/2023 team member
GAČR Grant GA21-02411S Solving ill posed problems in the dynamics of compressible fluids
VII.a - Activity, position | VII.b - Name of the institution, board | VII.c - Duration |
---|---|---|
Editorial board member | Applications of Mathematics (Springer) | from 04/2018 |
2022 L´Oréal-UNESCO For Women in Science Slovakia Laureat
2021 Independent researcher