Name and surname:
|
doc. RNDr. Veronika Medvecká, PhD.
|
Document type:
|
Research/art/teacher profile of a person
|
The name of the university:
|
Comenius University Bratislava
|
The seat of the university:
|
Šafárikovo námestie 6, 818 06 Bratislava
|
III.a - Occupation-position | III.b - Institution | III.c - Duration |
---|---|---|
Scientific researcher | Faculty of Mathematics, Physics and Informatics Comenius University in Bratislava | 2015-2021 |
Associate professor | Faculty of Mathematics, Physics and Informatics Comenius University in Bratislava | 1.1.2022-present |
IV.a - Activity description, course name, other | IV.b - Name of the institution | IV.c - Year |
---|---|---|
Rigorous exam in Physics | Faculty of Mathematics, Physics and Informatics Comenius University in Bratislava | 2013 |
Scientific qualification degree VKS IIa | SAS | 2019 |
V.1.a - Name of the profile course | V.1.b - Study programme | V.1.c - Degree | V.1.d - Field of study |
---|---|---|---|
Practical in mechanics and molecular physics | Physics | 1 | Physics |
Plasma Radiation | Plasma physics | 2 | Physics |
V.5.a - Name of the course | V.5.b - Study programme | V.5.c - Degree | V.5.d - Field of study |
---|---|---|---|
Plasma-chemical Methods of Surface Treatment | Plasma Physics | 2 | Physics |
Analytical Methods in Plasma Physics | Plasma Physics | 2 | Physics |
Advanced Laboratory Exercises from Plasma Physics | Plasma Physics | 2 | Physics |
Bioapplication of Plasma | Plasma Physics | 3 | Physics |
Medvecká, V., Surovčík, J., Roch, T., Zahoran, M., Pavliňák, D., & Kováčik, D. (2022). ZnO nanofibers prepared by plasma assisted calcination: Characterization and photocatalytic properties. Applied Surface Science, 581 doi:10.1016/j.apsusc.2021.152384
V. Medvecká, D. Kováčik, A. Zahoranová, M. Černák, Atmospheric pressure plasma assisted calcination by the preparation of TiO 2 fibers in submicron scale, Appl. Surf. Sci. 428 (2018) 609–615. https://doi.org/10.1016/j.apsusc.2017.09.178.
V. Medvecká, S. Mošovská, A. Mikulajová, Ľ. Valík, A. Zahoranová, Cold atmospheric pressure plasma decontamination of allspice berries and effect on qualitative characteristics, Eur. Food Res. Technol. 246 (2020) 2215–2223. https://doi.org/10.1007/s00217-020-03566-0.
A. Zahoranová, M. Henselová, D. Hudecová, B. Kaliňáková, D. Kováčik, V. Medvecká, M. Černák, Effect of Cold Atmospheric Pressure Plasma on the Wheat Seedlings Vigor and on the Inactivation of Microorganisms on the Seeds Surface, Plasma Chem. Plasma Process. 36 (2016) 397–414. https://doi.org/10.1007/s11090-015-9684-z.
V. Medvecká, D. Kováčik, A. Zahoranová, M. Stupavská, M. Černák, Atmospheric pressure plasma assisted calcination of organometallic fibers, Mater. Lett. 162 (2016) 79–82. https://doi.org/10.1016/j.matlet.2015.09.109.
Medvecká, V., Surovčík, J., Roch, T., Zahoran, M., Pavliňák, D., & Kováčik, D. (2022). ZnO nanofibers prepared by plasma assisted calcination: Characterization and photocatalytic properties. Applied Surface Science, 581 doi:10.1016/j.apsusc.2021.152384
V. Medvecká, D. Kováčik, M. Stupavská, T. Roch, A. Kromka, R. Fajgar, A. Zahoranová, M. Černák, Preparation and characterization of alumina submicron fibers by plasma assisted calcination, Ceram. Int. 46 (2020) 22774–22780. https://doi.org/10.1016/j.ceramint.2020.06.044.
S. Mošovská, V. Medvecká, M. Gregová, J. Tomeková, Ľ. Valík, A. Mikulajová, A. Zahoranová, Plasma inactivation of Aspergillus flavus on hazelnut surface in a diffuse barrier discharge using different working gases, Food Control. 104 (2019) 256–261. https://doi.org/10.1016/j.foodcont.2019.05.003.
J. Šimončicová, S. Kryštofová, V. Medvecká, K. Ďurišová, B. Kaliňáková, Technical applications of plasma treatments: current state and perspectives, Appl. Microbiol. Biotechnol. 103 (2019) 5117–5129. https://doi.org/10.1007/s00253-019-09877-x.
S. Mošovská, V. Medvecká, N. Halászová, P. Ďurina, Ľ. Valík, A. Mikulajová, A. Zahoranová, Cold atmospheric pressure ambient air plasma inhibition of pathogenic bacteria on the surface of black pepper, Food Res. Int. 106 (2018) 862–869. https://doi.org/10.1016/j.foodres.2018.01.066.
J. Šimončicová, S. Kryštofová, V. Medvecká, K. Ďurišová, B. Kaliňáková, Technical applications of plasma treatments: current state and perspectives, Appl. Microbiol. Biotechnol. 103 (2019) 5117–5129. https://doi.org/10.1007/s00253-019-09877-x: [o1] 2021 Lin, L. L. - Pho, H. Q. - Zong, L. - Li, S. R. - Pourali, N. - Rebrov, E. - Tran, N. N. - Ostrikov, K. - Hessel, V.: Microfluidic plasmas: Novel technique for chemistry and chemical engineering. In: Chemical Engineering Journal, Vol.417, 2021, Art. No. 129355 - SCI ; SCOPUS
J. Šimončicová, S. Kryštofová, V. Medvecká, K. Ďurišová, B. Kaliňáková, Technical applications of plasma treatments: current state and perspectives, Appl. Microbiol. Biotechnol. 103 (2019) 5117–5129. https://doi.org/10.1007/s00253-019-09877-x: [o1] 2021 Patinglag, L. - Melling, L. M. - Whitehead, K. A. - Sawtell, D. - Iles, A. - Shaw, K. J.: Non-thermal plasma-based inactivation of bacteria in water using a microfluidic reactor. In: Water Research, Vol. 201,2021, Art. No. 117321 -SCI ; SCOPUS
S. Mošovská, V. Medvecká, M. Gregová, J. Tomeková, Ľ. Valík, A. Mikulajová, A. Zahoranová, Plasma inactivation of Aspergillus flavus on hazelnut surface in a diffuse barrier discharge using different working gases, Food Control. 104 (2019) 256–261. https://doi.org/10.1016/j.foodcont.2019.05.003: [o1] 2021 Wu, Y. - Cheng, J. H. - Sun, D. W.: Blocking and degradation of aflatoxins by cold plasma treatments: Applications and mechanisms. In: Trends in Food Science & Technology, Vol. 109, 2021, s. 647-661 - SCI ; SCOPUS
V. Medvecká, D. Kováčik, A. Zahoranová, M. Černák, Atmospheric pressure plasma assisted calcination by the preparation of TiO2 fibers in submicron scale, Appl. Surf. Sci. 428 (2018) 609–615. https://doi.org/10.1016/j.apsusc.2017.09.178: [o1] 2021 Shepa, I. - Mudra, E. - Dusza, J.: Electrospinning through the prism of time. In: Materials Today Chemistry, Vol. 21, 2021, art. no. 100543 - SCOPUS
E. Mudra, M. Streckova, D. Pavlinak, V. Medvecka, D. Kovacik, A. Kovalcikova, P. Zubko, V. Girman, Z. Dankova, V. Koval, J. Duzsa, Development of Al2O3 electrospun fibers prepared by conventional sintering method or plasma assisted surface calcination, Appl. Surf. Sci. 415 (2017) 90–98. https://doi.org/10.1016/j.apsusc.2016.11.162: [o1] 2018 Homola, T. - Pospíšil, J. - Krumpolec, R. .Soucek, P. - Dzik, P. - Weiter, M. - Černák, M.: Atmospheric Dry Hydrogen Plasma Reduction of Inkjet-Printed Flexible Graphene Oxide Electrodes. In: ChemSusChem, Vol. 11, No. 5, 2018, s.941-947 - SCOPUS
VEGA 1/0688/22 (2022-2025) Interakcia nízkoteplotnej plazmy a jej jednotlivých zložiek s biologickým materiálom v poľnohospodárstve a
potravinárstve, hlavný riešiteľ
Interaction of low-temperature plasma and their components with biological material in agriculture and food industry, the principal investigator
The project aims to study the interaction of low-temperature plasma generated at atmospheric pressure with the surface of biological materials and to determine the influence of individual plasma components (active particles, radiation, electric field, and temperature) on physico-chemical surface properties and biological processes. The plasma systems relevant to practical application in plasma agriculture and the food industry based on dielectric barrier discharges and plasma jets will be investigated. Separation of the individual plasma components and elucidation of their influence on biological samples, the study of potential synergistic effect and optimization of conditions for plasma treatment of plant matrices is an important step in designing suitable plasma sources for specific applications and using plasma technologies in practice as an alternative and more environmentally friendly approach in agriculture and food processing.
https://alis.uniba.sk:8444/search/query?term_1=vega+1/0688/22&theme=EPC
APVV-21-0147 (2022-2026) Progresívne plazmové technológie aplikovateľné v poľnohospodárstve pre povrchovú úpravu osív, semien a suchých plodov, spoluriešiteľ
Advanced plasma technologies applicable in agriculture for surface treatment of seeds and dried fruits, the co-investigator
The aim of the project is to study atmospheric pressure LTP generated by different types of plasma sources relevant for application in agriculture to various types of plant models. The research is focused on evaluating the overall effects of LTP on seeds and dried fruits. The effects of plasma will be investigated on changes in the physicochemical properties on the seed surface, on the growth, physiological, biochemical, molecular-biological and anatomical aspects of plants after plasma treatment of seeds, and the potential genotoxic or antigenotoxic effects. It also includes a study of the plasma effects on plant resistance and the initiation of an adaptive response
to environmental stressors (heavy metals, salinity, etc.), which is currently a highly current issue in the adaptation of agriculture to climate changes and environmental pollution.
One of the goals of the presented project is to verify the effectiveness of the proposed prototype device based on Diffuse Coplanar Surface Dielectric Barrier Discharge in an industrially relevant environment to improve germination parameters, for which chemical treatment (seed dressing) is standard. This method represents a promising economically and ecologically advantageous technology for the treatment of plant seeds intended for sowing, germination, storage and consumption.
https://alis.uniba.sk:8444/search/query?term_1=APVV-21-0147&theme=EPC
VEGA 1/0782/19 (2019-2021) , Štúdium plazmochemických procesov pri príprave anorganických nanovlákien metódou plazmou asistovanej kalcinácie, hlavný riešiteľ
The study of plasma-chemical processes in the preparation of inorganic nanofibers by method of plasma assisted calcination, the principal investigator
The aim of the project is study of plasma assisted calcination (PAC) in the preparation of inorganic nanofibers. The PAC of metal-organic fibers with the use of low-temperature plasma appears to be a prospective alternative to conventional thermal calcination. Thermal calcination is a high temperature (~100°C) long-term (several hours) process for removing of the polymer matrix and oxidation of precursor from polymer/precursor fibers to form inorganic nanofibres. Low-temperature non-equilibrium plasma is a chemically active environment, and with the use of a working gas with high oxidation potential, it is possible to produce ceramic nanofibers in significantly shorter time at lower temperature.
https://alis.uniba.sk:8444/search/query?term_1=vega+1/0782/19&theme=EPC
Medvecká, V., Kováčik, D., Stupavská, M., Roch, T., et al., Preparation and characterization of alumina submicron fibers by plasma assisted calcination. Ceram. Int. 2020, 46, 22774–22780
APVV -16-0216 (2017-2021), Moderné plazmové technológie pre ekologické poľnohospodárstvo a potravinárstvo, spoluriešiteľ
Modern plasma technologies for organic agriculture and food industry, the co-investigator
The project focused on the application of low-temperature plasma generated at atmospheric pressure for the treatment of biological material in agriculture and food industry for improvement of germination, growth dynamics and plant vitality, as well as for elimination of undesirable pathogenic microorganisms on the surface of seeds (and fruits).
The use of low-temperature plasma is an environmentally and economically appropriate method for the gentle treatment of seeds of plants intended for sowing (cereals, legumes and others) and stored agricultural commodities (especially cereals, nuts,
dried fruits) and for the human and animal nutrition and is a preferred alternative, or an additional method to the traditional treatment of seeds with chemical agents.
https://alis.uniba.sk:8444/search/query?term_1=APVV-16-0216&theme=EPC
VEGA 1/0930/17 (2017-2019), Funkcionalizácia polymérnych povrchov pomocou plazmy generovanej v kvapalinách , spoluriešiteľ
Functionalization of polymer surfaces using plasma generated in liquids, the co-investigator
The aim of the project was modification of polymer materials (permanent hydrophilicity, antibacterial treatment and immobilization of functional groups) by using low-temperature method using plasma generated in liquid medium.
The grafting of the functional groups with the desired properties on the polymer surface at different conditions of plasma generated in the liquid medium will be studied by modern diagnostic methods. At the same time the physical mechanism of the discharge in the liquids will be studied. New methods of plasma surface treatment of polymer materials will enable their application in many fields of textile, automotive, building and energy industry as functional and technical textiles, filtration and transfer media, membranes and separators.
The non-equilibrium plasma source based on a
high voltage pulsed diaphragm discharge in a liquid medium is an alternative method for treatment of the
polymers surfaces.
https://alis.uniba.sk:8444/search/query?term_1=VEGA+1/0930/17&theme=EPC
VEGA 1/0811/21 (2021-2023), Ochranné hydrofóbne vrstvy pripravené metódou plazmovej polymerizácie pri atmosférickom tlaku, spoluriešiteľ
Protective hydrophobic coatings fabricated by plasma polymerization at atmospheric pressure, co-investigator
Hydrophobic surfaces are used in many applications due to their self-cleaning, anti-corrosion, and anti-icing properties. They can be formed using hydrophobic coatings in a number of ways, including the use of low-temperature plasma, which is an environmentally and cost-effective alternative to conventional chemical methods. In recent years, attention has been paid mainly to plasma technologies at atmospheric pressure, due to their simpler technical design and lower financial demands compared to low-pressure plasma. The project aims to study the preparation of hydrophobic or superhydrophobic layers on various surfaces by plasma polymerization at atmospheric pressure. Research will focus to clarify the plasma-chemical processes affecting the plasma polymerization process and a deeper understanding of the physico-chemical mechanisms responsible for the formation of a layer with optimal hydrophobic properties.
https://alis.uniba.sk:8444/search/query?term_1=VEGA+1/0811/21&theme=EPC
VIII.a - Name of the institution | VIII.b - Address of the institution | VIII.c - Duration (indicate the duration of stay) | VIII.d - Mobility scheme, employment contract, other (describe) |
---|---|---|---|
EMPA-Swiss Federal Laboratories for Materials Science and Technology | Lerchenfeldstrasse 5, St. Gallen | 01.02.-31.07.2014 | SCIEX-NMSch |
Faculty of Science, Masaryk University | Kotlářská 267/2, 611 37 Brno | 01.07.-31.12.2020 | employment contract, cooperation on a project |
Faculty of Science, Masaryk University | Kotlářská 267/2, 611 37 Brno | 01.07.-31.12.2019 | employment contract, cooperation on a project |