Name and surname:
|
Dr. rer. nat. Tatiana Kossaczká, MSc.
|
Document type:
|
Research/art/teacher profile of a person
|
The name of the university:
|
Comenius University Bratislava
|
The seat of the university:
|
Šafárikovo námestie 6, 818 06 Bratislava
|
III.a - Occupation-position | III.b - Institution | III.c - Duration |
---|---|---|
special assistent | University of Wuppertal, School of Mathematics and Natural Science | 2017-2018 |
research assistent | University of Wuppertal, School of Mathematics and Natural Science | 2020-2024 |
IV.a - Activity description, course name, other | IV.b - Name of the institution | IV.c - Year |
---|---|---|
Introduction to numerical mathematics | University of Wuppertal, School of Mathematics and Natural Science | 2018 |
Numerical methods for solving ordinary differential equations | University of Wuppertal, School of Mathematics and Natural Science | 2020 |
Advanced mathematics | University of Wuppertal, School of Mathematics and Natural Science | 2023 |
Programming seminar: Introduction to numerical mathematics | University of Wuppertal, School of Mathematics and Natural Science | 2024 |
V.1.a - Name of the profile course | V.1.b - Study programme | V.1.c - Degree | V.1.d - Field of study |
---|---|---|---|
Probability and Statistics for Informaticians | Applied informatics | I. | Inofrmatics |
Numerical Modelling | Mathematics of economy, finance and modeling | II. | Mathematics |
V.5.a - Name of the course | V.5.b - Study programme | V.5.c - Degree | V.5.d - Field of study |
---|---|---|---|
Financial Derivatives | Mathematics of economy, finance and modeling | II. | Mathematics |
Kossaczká, T., Ehrhardt, M., & Günther, M.: Enhanced fifth order WENO shock-capturing schemes with deep learning. Results in Applied Mathematics, 12, 100201. 2021.
Kossaczká, T., Ehrhardt, M., & Günther, M.: A neural network enhanced weighted essentially non-oscillatory method for nonlinear degenerate parabolic equations. Physics of Fluids, 34(2), 026604. 2022.
Kossaczká, T., Ehrhardt, M., & Günther, M.: A deep smoothness WENO method with applications in option pricing. European Consortium for Mathematics in Industry. Springer International Publishing, 417-423. 2022.
Kossaczká, T., Ehrhardt, M., & Günther, M.: Deep FDM: Enhanced finite difference methods by deep learning. Franklin Open, 4, 100039. 2023.
Kossaczká, T., Jagtap, A.D. & Ehrhardt, M.: Deep smoothness weighted essentially non-oscillatory method for two-dimensional hyperbolic conservation laws: A deep learning approach for learning smoothness indicators. Physics of Fluids, 36(3), 036603. 2024.
Kossaczká, T., Ehrhardt, M., & Günther, M.: Enhanced fifth order WENO shock-capturing schemes with deep learning. Results in Applied Mathematics, 12, 100201. 2021.
Kossaczká, T., Ehrhardt, M., & Günther, M.: A neural network enhanced weighted essentially non-oscillatory method for nonlinear degenerate parabolic equations. Physics of Fluids, 34(2), 026604. 2022.
Kossaczká, T., Ehrhardt, M., & Günther, M.: A deep smoothness WENO method with applications in option pricing. European Consortium for Mathematics in Industry. Springer International Publishing, 417-423. 2022.
Kossaczká, T., Ehrhardt, M., & Günther, M.: Deep FDM: Enhanced finite difference methods by deep learning. Franklin Open, 4, 100039. 2023.
Kossaczká, T., Jagtap, A.D. & Ehrhardt, M.: Deep smoothness weighted essentially non-oscillatory method for two-dimensional hyperbolic conservation laws: A deep learning approach for learning smoothness indicators. Physics of Fluids, 36(3), 036603. 2024.
Zeifang, J. and Beck, A., 2021. A data-driven high order sub-cell artificial viscosity for the discontinuous Galerkin spectral element method. Journal of Computational Physics, 441, p.110475.
Ning, J., Su, X. and Xu, X., 2022. Improved fifth-order weighted essentially non-oscillatory scheme with low dissipation and high resolution for compressible flows. Physics of Fluids, 34(5).
Zhang, X., Huang, L., Jiang, Z. and Yan, C., 2022. A class of high-order improved fast weighted essentially non-oscillatory schemes for achieving optimal order at any critical points. Physics of Fluids, 34(12).
Wang, Z., Zhu, J., Wang, C. and Zhao, N., 2022. Finite difference alternative unequal-sized weighted essentially non-oscillatory schemes for hyperbolic conservation laws. Physics of Fluids, 34(11).
Drozda, L., Mohanamuraly, P., Cheng, L., Lapeyre, C., Daviller, G., Realpe, Y., Adler, A., Staffelbach, G. and Poinsot, T., 2023. Learning an optimised stable Taylor-Galerkin convection scheme based on a local spectral model for the numerical error dynamics. Journal of Computational Physics, 493, p.112430.
DAAD-MŠ ENANEFA – Efficient Numerical Approximation of Nonlinear Equations in Financial Applications