Name and surname:
|
Mgr. Vladimír Boža, PhD.
|
Document type:
|
Research/art/teacher profile of a person
|
The name of the university:
|
Comenius University Bratislava
|
The seat of the university:
|
Šafárikovo námestie 6, 818 06 Bratislava
|
III.a - Occupation-position | III.b - Institution | III.c - Duration |
---|---|---|
Assistant professor | Faculty of Mathematics, Physics and Informatics, Comenius University in Bratislava | 2017 - now |
IV.a - Activity description, course name, other | IV.b - Name of the institution | IV.c - Year |
---|---|---|
English | Faculty of Mathematics, Physics and Informatics, Comenius University in Bratislava | 2008 |
V.5.a - Name of the course | V.5.b - Study programme | V.5.c - Degree | V.5.d - Field of study |
---|---|---|---|
Principles of Data Science | Data Science | I. | Computer Science |
Data Management | Data Science | I. | Computer Science |
Time-Restricted Programming (1) | Informatics | I. | Computer Science |
Time-Restricted Programming (2) | Informatics | I. | Computer Science |
Time-Restricted Programming (3) | Informatics | I. | Computer Science |
Time-Restricted Programming (4) | Informatics | I. | Computer Science |
Time-Restricted Programming (5) | Informatics | I. | Computer Science |
Current Approaches in Machine Learning | Informatics | II. | Computer Science |
Machine Learning | Informatics | II. | Computer Science |
Boža, V., Brejová, B., & Vinař, T. (2017). DeepNano: deep recurrent neural networks for base calling in MinION nanopore reads. PloS one, 12(6), e0178751.
Kvapilova, L., Boza, V., Dubec, P., Majernik, M., Bogar, J., Jamison, J., ... & Karlin, D. R. (2019). Continuous sound collection using smartphones and machine learning to measure cough. Digital biomarkers, 3(3), 166-175.
Boža, V., Perešíni, P., Brejová, B., & Vinař, T. (2020). DeepNano-blitz: a fast base caller for MinION nanopore sequencers. Bioinformatics, 36(14), 4191-4192.
Boža, Vladimír, and Vladimír Macko. "Two Sparse Matrices are Better than One: Sparsifying Neural Networks with Double Sparse Factorization." In The Thirteenth International Conference on Learning Representations. 2025.
Perešíni, P., Boža, V., Brejová, B., & Vinař, T. (2021). Nanopore base calling on the edge. Bioinformatics, 37(24), 4661-4667.
Herman, Robert, et al. "International evaluation of an artificial intelligence–powered electrocardiogram model detecting acute coronary occlusion myocardial infarction." European Heart Journal-Digital Health 5.2 (2024): 123-133.
Kvapilova, L., Boza, V., Dubec, P., Majernik, M., Bogar, J., Jamison, J., ... & Karlin, D. R. (2019). Continuous sound collection using smartphones and machine learning to measure cough. Digital biomarkers, 3(3), 166-175.
Boža, Vladimír, and Vladimír Macko. "Two Sparse Matrices are Better than One: Sparsifying Neural Networks with Double Sparse Factorization." In The Thirteenth International Conference on Learning Representations. 2025.
Perešíni, P., Boža, V., Brejová, B., & Vinař, T. (2021). Nanopore base calling on the edge. Bioinformatics, 37(24), 4661-4667.
Boza, Vladimir, et al. "Dynamic Pooling Improves Nanopore Base Calling Accuracy." IEEE/ACM Transactions on Computational Biology and Bioinformatics (2021).
Ching, T., Himmelstein, D. S., Beaulieu-Jones, B. K., Kalinin, A. A., Do, B. T., Way, G. P., ... & Greene, C. S. (2018). Opportunities and obstacles for deep learning in biology and medicine. Journal of The Royal Society Interface, 15(141), 20170387.
Simpson, J. T., & Pop, M. (2015). The theory and practice of genome sequence assembly. Annual review of genomics and human genetics, 16, 153-172.
Garalde, D. R., Snell, E. A., Jachimowicz, D., Sipos, B., Lloyd, J. H., Bruce, M., ... & Turner, D. J. (2018). Highly parallel direct RNA sequencing on an array of nanopores. Nature methods, 15(3), 201-206.
Eraslan, G., Avsec, Ž., Gagneur, J., & Theis, F. J. (2019). Deep learning: new computational modelling techniques for genomics. Nature Reviews Genetics, 20(7), 389-403.
Wick, R. R., Judd, L. M., & Holt, K. E. (2019). Performance of neural network basecalling tools for Oxford Nanopore sequencing. Genome biology, 20(1), 1-10.
Vladimír Boža (vedúci): Rýchle rozpoznávanie báz pre nanopórový sekvenántor MinION / Vladimír Boža (leading): Fast base callers for MinION nanopore sequencers, Google Cloud Computing Grant
Vladimír Boža (účasť): Chyby a neurčitosť v sekvenovaní DNA: Algoritmy a modely (vedúci Tomáš Vinař, Mária Lucká), VEGA 1/0458/18 / Vladimír Boža (participation): Error and uncertainty in DNA sequencing: algorithms and models (principal investigators Tomáš Vinař, Mária Lucká)
Vladimír Boža (účasť): Nekonvenčné aplikácie nových sekvenačných technológií v komparatívnej a funkčnej genomike (vedúci Jozef Nosek, Tomáš Vinař), APVV-18-0239 / Vladimír Boža (participation): Non-conventional applications of emerging sequencing technologies in comparative and functional genomics (principal investigators Jozef Nosek, Tomáš Vinař), APVV-18-0239
VII.a - Activity, position | VII.b - Name of the institution, board | VII.c - Duration |
---|---|---|
Program commitee member | International Conference on Artificial Neural Networks | 2021 |
VIII.a - Name of the institution | VIII.b - Address of the institution | VIII.c - Duration (indicate the duration of stay) | VIII.d - Mobility scheme, employment contract, other (describe) |
---|---|---|---|
Zurich, Switzerland | July 2010 - September 2010 | internship | |
Zurich, Switzerland | June 2011 - September 2011 | internship |
Grandmaster in data science competitions on Kaggle.com