|
Name and surname:
|
Mgr. Eva Brestovanská, PhD.
|
|
Document type:
|
Research/art/teacher profile of a person
|
|
The name of the university:
|
Comenius University Bratislava
|
|
The seat of the university:
|
Šafárikovo námestie 6, 818 06 Bratislava
|
ADE E.Brestovanská, M.Medveď: Solow differential equations on time scales-A unified approach to continuous and discrete Solow growth model, DEA-Differential Equations & Appl., Vol. 5, No. 4 (2013), 473-488, 50 %, SCOPUS, SCI, (1) (O1 = 1)
ADC E. Brestovanská, M.Medveď: Asymptotic behavior of solutions to second order differential equations with fractional derivative perturbations, EJDE, Vol. 2014 , No. 201 (2014), 1-10., 1,282, 50 % SCOPUS, WOS, (15), O1 = 11, O3 = 14
ADC E.Brestovanska, M. Medveď:New conditions for the exponential stability of fractionally perturbed ODEs, EJQTDE, Vol. 84 (2018), 1-14, 1,874, 50 %, SCOPUS, (1),O1=1
ADC E. Brestovanská, M.Medveď: Exponential stability of solutions of nonlinear fractionally perturbed ordinary differential equations, EJDE, Vol. 2017 ,No. 280 (2017), 1-17,1,282, 50 %, SCOPUS, WOS, (1), O1=1
ADC M. Medveď, M. Pospíšil, E. Brestovanská: Nonlinear integral inequalities involving tempered Psi-Hilfer fractional integral and fractional equations with tempered Psi-Caputo fractional derivative. Fractal and Fractional, 7, 611 (2023), 1-17.
ADC E. Brestovanská, M. Medveď: New conditions for the exponential stability of fractionaly perturbed ODEs, EJQTDE, Vol. 84 (2018),1-14, 1,874, 50 %, SCOPUS, (1), O1 = 1
ADE M. Medveď, E. Brestovanská: Sufficient conditions for the exponential stability of nonlinear fractionally perturbed ODEs with multiple delays, Fractional Differential Calculus, Vol. 9, No. 2 (2019), 263-278, 50 % (0)
ADM M. Medveď, E. Brestovanská:Differential equations with tempered Psi-Caputo fractional detrivative, Mathematical Modellig and Analysis, Vol. 26, No. 4 (2021), 631-650,1,474, 50 %, WOS, SCOPUS (0)
ADC M. Medveď, M. Pospíšil, E. Brestovanská: Nonlinear integral inequalities involving tempered Psi-Hilfer fractional integral and fractional equations with tempered Psi-Caputo fractional derivative. Fractal and Fractional, 7, 611 (2023), 1-17.
M. Medveď, M. Pospíšil, E. Brestovanská: Nonlinear integral inequalities involving Ψ-Hilfer fractional integrals and iterated fractional integrals, with applications to Ψ-Caputo fractional differential equations, EJQTDE, Vol. 2025, No. 30 (2025), 1-24
A. M. A. EL-SAYED1 , SH. M. AL-ISSA2,3∗ , H. H. G. HASHEM1, I. H. KADDOURA2,3, A. A. NAJD: EXTENSIVE EXPLORATION OF MULTI-TERM HYBRID FUNCTIONAL EQUATION VIA HYBRID DIFFERENTIAL FEEDBACK CONTROL
TWMS J. App. and Eng. Math. V.15, N.10, 2025, pp. 2421-2438
Existence, uniqueness, continuous dependence on the data for the product of
n-fractional integral equations in Orlicz spaces
Abdulaziz M. Alotaibi1, Mohamed M. A. Metwali, Hala H.Taha, and Ravi P Agarwal
Existence, uniqueness, continuous dependence on
AIMS Mathematics, 10(4): 8382–8397.
DOI: 10.3934/math.2025386
Published: 11 April 2025
Nisse, K. Analysis of coupled systems of tempered -fractional differential equations via Perov’s fixed point theorem. J Anal (2025). https://doi.org/10.1007/s41478-025-01001-9
Mieczysław Cichon , Wafa Shammakh and Hussein A. H. Sal
A Unified Framework for Fractional and Non-Fractional
Operators in Some Function SpacesFractal Fract. 2025, 9,
441. https://doi.org/10.3390/
fractalfract9070441
Abdelkrim Salim, Hassiba Benbouali,, Mouffak Benchohra
On boundary value problems with implicit random Caputo tempered fractional differential equations
The Journal of Analysis January 2025, 33:971–98